Skip Navigation
Skip to contents

Cancer Res Treat : Cancer Research and Treatment

OPEN ACCESS

Search

Page Path
HOME > Search
2 "Jeesun Yoon"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Articles
Gastrointestinal cancer
Inhibition of WEE1 Potentiates Sensitivity to PARP Inhibitor in Biliary Tract Cancer
Hye-Rim Seo, Ah-Rong Nam, Ju-Hee Bang, Kyoung-Seok Oh, Jae-Min Kim, Jeesun Yoon, Tae-Yong Kim, Do-Youn Oh
Cancer Res Treat. 2022;54(2):541-553.   Published online August 6, 2021
DOI: https://doi.org/10.4143/crt.2021.473
AbstractAbstract PDFPubReaderePub
Purpose
Up to 20% of patients with biliary tract cancer (BTC) have alterations in DNA damage response (DDR) genes, including homologous recombination (HR) genes. Therefore, the DDR pathway could be a promising target for new drug development in BTC. We aim to investigate the anti-tumor effects using poly(ADP-ribose) polymerase (PARP) and WEE1 inhibitors in BTC.
Materials and Methods
We used 10 BTC cell lines to evaluate an anti-tumor effect of olaparib (a PARP inhibitor) and AZD1775 (a WEE1 inhibitor) in in vitro. Additionally, we established SNU869 xenograft model for in vivo experiments.
Results
In this study, we observed a modest anti-proliferative effect of olaparib. DNA double-strand break (DSB) and apoptosis were increased by olaparib in BTC cells. However, olaparib-induced DNA DSB was repaired through the HR pathway, and G2 arrest was induced to secure the time for repair. As AZD1775 typically regulates the G2/M checkpoint, we combined olaparib with AZD1775 to abrogate G2 arrest. We observed that AZD1775 downregulated p-CDK1, a G2/M cell cycle checkpoint protein, and induced early mitotic entry. AZD1775 also decreased CtIP and RAD51 expression and disrupted HR repair. In xenograft model, olaparib plus AZD1775 treatment reduced tumor growth more potently than did monotherapy with either drug.
Conclusion
This is the first study to suggest that olaparib combined with AZD1775 can induce synergistic anti-tumor effects against BTC. Combination therapy that blocks dual PARP and WEE1 has the potential to be further clinically developed for BTC patients.

Citations

Citations to this article as recorded by  
  • Current and Future Therapeutic Targets for Directed Molecular Therapies in Cholangiocarcinoma
    Philipp Heumann, Andreas Albert, Karsten Gülow, Denis Tümen, Martina Müller, Arne Kandulski
    Cancers.2024; 16(9): 1690.     CrossRef
  • Combined strategies with PARP inhibitors for the treatment of BRCA wide type cancer
    Yijun Xie, Di Xiao, Duo Li, Mei Peng, Wei Peng, Huaxin Duan, Xiaoping Yang
    Frontiers in Oncology.2024;[Epub]     CrossRef
  • Update on Combination Strategies of PARP Inhibitors
    Zhuoqun Lin, Lingfang Wang, Ziyu Xing, Fenfen Wang, Xiaodong Cheng
    Cancer Control.2024;[Epub]     CrossRef
  • The mechanism and clinical application of DNA damage repair inhibitors combined with immune checkpoint inhibitors in the treatment of urologic cancer
    Deqian Xie, Bowen Jiang, Shijin Wang, Qifei Wang, Guangzhen Wu
    Frontiers in Cell and Developmental Biology.2023;[Epub]     CrossRef
  • DNA Damage Response Inhibitors in Cholangiocarcinoma: Current Progress and Perspectives
    Öykü Gönül Geyik, Giulia Anichini, Engin Ulukaya, Fabio Marra, Chiara Raggi
    Cells.2022; 11(9): 1463.     CrossRef
  • Targeted Therapy of HPV Positive and Negative Tonsillar Squamous Cell Carcinoma Cell Lines Reveals Synergy between CDK4/6, PI3K and Sometimes FGFR Inhibitors, but Rarely between PARP and WEE1 Inhibitors
    Ourania N. Kostopoulou, Mark Zupancic, Mariona Pont, Emma Papin, Monika Lukoseviciute, Borja Agirre Mikelarena, Stefan Holzhauser, Tina Dalianis
    Viruses.2022; 14(7): 1372.     CrossRef
  • Targeted Therapy with PI3K, PARP, and WEE1 Inhibitors and Radiotherapy in HPV Positive and Negative Tonsillar Squamous Cell Carcinoma Cell Lines Reveals Synergy while Effects with APR-246 Are Limited
    Karin Byskata, Monika Lukoseviciute, Filippo Tuti, Mark Zupancic, Ourania N. Kostopoulou, Stefan Holzhauser, Tina Dalianis
    Cancers.2022; 15(1): 93.     CrossRef
  • 6,858 View
  • 225 Download
  • 10 Web of Science
  • 7 Crossref
Close layer
Targeting Hypoxia Using Evofosfamide and Companion Hypoxia Imaging of FMISO-PET in Advanced Biliary Tract Cancer
Jeesun Yoon, Seo Young Kang, Kyung-Hun Lee, Gi Jeong Cheon, Do-Youn Oh
Cancer Res Treat. 2021;53(2):471-479.   Published online October 22, 2020
DOI: https://doi.org/10.4143/crt.2020.577
AbstractAbstract PDFSupplementary MaterialPubReaderePub
Purpose
Hypoxia is widely known as one of the mechanisms of chemoresistance and as an environmental condition which triggers invasion and metastasis of cancer. Evofosfamide is a hypoxia-activated prodrug of the cytotoxin bromo-isophosphoramide mustard conjugated with 2-nitroimidazole. Biliary tract cancer (BTC) is known to contain large hypoxic area. This study evaluated the efficacy and safety of evofosfamide as a second-line treatment of advanced BTC.
Materials and Methods
Patients received evofosfamide at a dose of 340 mg/m2 on days 1, 8, and 15 of every 28-day cycle. Primary end-point was progression-free survival (PFS) rate at 4-months (4m-PFSR). Secondary end-points included overall survival (OS), PFS, disease control rate (DCR), metabolic response by 18F-fluorodeoxyglucose positron emission tomography (PET), hypoxic parameters evaluated by 18F-fluoromisonidazole (FMISO) PET and toxicity.
Results
Twenty patients were treated with evofosfamide, with 16 response-evaluable patients. There was no objective response; stable disease was observed in nine patients, with a DCR of 56.25%. 4m-PFSR was 40.6%. Median PFS was 3.60 months (95% confidence interval [CI], 1.68 to 5.52). Median OS was 6.37 months (95% CI, 3.94 to 8.79). Reduction of tumor metabolic activity was observed in eight of 15 patients (53.3%). High baseline hypoxic parameters were associated with poor PFS. Change of hypoxic parameters between pretreatment and post-treatment reflected hypoxic-activated drug response. There was no treatment-related death.
Conclusion
Evofosfamide as second-line treatment of advanced BTC showed acceptable safety and comparable efficacy to other agents. Changes in volumetric parameters measured with FMISO PET, showing the degree of tumor hypoxia, reflected the response to evofosfamide based on the mode of action.

Citations

Citations to this article as recorded by  
  • Functional Imaging of Hypoxia: PET and MRI
    Ryan C. Perez, DaeHee Kim, Aaron W. P. Maxwell, Juan C. Camacho
    Cancers.2023; 15(13): 3336.     CrossRef
  • Phase Ib dose-escalation study of the hypoxia-modifier Myo-inositol trispyrophosphate in patients with hepatopancreatobiliary tumors
    Marcel A. Schneider, Michael Linecker, Ralph Fritsch, Urs J. Muehlematter, Daniel Stocker, Bernhard Pestalozzi, Panagiotis Samaras, Alexander Jetter, Philipp Kron, Henrik Petrowsky, Claude Nicolau, Jean-Marie Lehn, Bostjan Humar, Rolf Graf, Pierre-Alain C
    Nature Communications.2021;[Epub]     CrossRef
  • 5,676 View
  • 180 Download
  • 2 Web of Science
  • 2 Crossref
Close layer

Cancer Res Treat : Cancer Research and Treatment
Close layer
TOP