Photodynamic Effects of Radachlorin® on Cervical Cancer Cells

Su-Mi Bae, MS.1, Yong-Wook Kim, M.D., Ph.D.2, Joon-Mo Lee, M.D., Ph.D.2, Sung-Eun Namkoong, M.D., Ph.D.2, Sei-Jun Han, M.D., Ph.D.2, Jong-Ki Kim, Ph.D.3, Chang-Hee Lee, Ph.D.4, Heung-Jae Chun, Ph.D.1, Hyun-Sun Jin, Ph.D.1 and Woong-Shick Ahn, M.D., Ph.D.2

1Catholic Research Institutes of Medical Science, 2Department of Obstetrics and Gynecology, The Catholic University of Korea College of Medicine, Seoul, 3Department of Obstetrics and Gynecology, The Catholic University of Korea College of Medicine, Daegu, 4Department of Chemistry, Kangwon University, Gangwondo, Korea

Purpose: Photodynamic therapy (PDT) is a novel treatment modality, which produces local tissue necrosis with laser light following the prior administration of a photosensitizing agent. Radachlorin® has recently been shown to be a promising PDT sensitizer. In order to elucidate the antitumor effects of PDT using Radachlorin® on cervical cancer, growth inhibition studies on a HPV-associated tumor cell line, TC-1 cells in vitro and animals with an established TC-1 tumor in vivo were determined.

Materials and methods: TC-1 tumor cells were exposed to various concentrations of Radachlorin® and PDT, with irradiation of 12.5 or 25 J/cm² at an irradiance of 20 mW/cm² using a Won-PDT D662 laser at 662 nm in vitro. C57BL/6 mice with TC-1 tumor were injected with Radachlorin® via different routes and treated with PDT in vivo. A growth suppression study was then used to evaluate the effects at various time points after PDT.

Results: The results showed that irradiation of TC-1 tumor cells in the presence of Radachlorin® induced significant cell growth inhibition. Animals with established TC-1 tumors exhibited significantly smaller tumor sizes over time when treated with Radachlorin® and irradiation.

Conclusion: PDT after the application of Radachlorin® appears to be effective against TC-1 tumors both in vitro and in vivo. (Cancer Research and Treatment 2004;36: 389-394)

Key Words: Radachlorin®, Photodynamic therapy (PDT), Cervical cancer, TC-1 cell
have only been a few studies on the PDT effects of Radachlorin® in cervical cancer, although there have been several studies on Chlorin e₆, which is a major component of Radachlorin®. Therefore, in this study, the PDT induced antitumor effects of Radachlorin® were evaluated in cervical cancer cells and an animal model.

MATERIALS AND METHODS

1) Photosensitizer

The Radachlorin® was purchased from the RADA-PHARMA group (RADA-PHARMA Co, Ltd., Moscow, Russia), which was stable in solutions at 0±8°C in the dark.

2) Cell culture conditions

A mouse lung cancer cell line of TC-1 cells, which was derived from primary epithelial cells of C57BL/6 mice co-transformed with HPV-16 E6 and E7, as well as c-Ha-ras oncogenes (from Cancer Research Center, Seoul National University, Korea), were cultured on RPMI 1640 media (Gibco BRL, Rocksville, MD) supplemented with 10% fetal bovine serum (FBS) (Gibco BRL), Streptomycin/penicillin (Gibco BRL), L-glutamine (Gibco BRL), 2.2 mg/ml sodium bicarbonate (Sigma, St. Louis, MO) 0.4 mg/ml G418 disulfate (Duchefa, Netherlands) were added to the culture medium and the cells maintained at 37°C in a 5% CO₂ humid environment.

3) Immunization of mice

The female C57BL/6 mice (6-8 weeks old) were purchased from DaeHan Biolink (Daejon, Korea), and maintained under pathogen-free conditions. A TC-1 tumor animal model was established as previously reported (22). Briefly, 0.1 ml PBS suspension (3×10⁴ cells/ml) of TC-1 cells was injected subcutaneously into the belly of the mice using a syringe. After the cancer cells had made a tumor size of 9 mm, the TC-1 cells were washed twice with PBS and fixed with 1% paraformaldehyde. The cells were then washed again with distilled water, the cover glasses removed from the 6 well plates and mounted on slide glass. Confocal microscope (MRC 1024, Bio-RAD, Hercules, CA) measurements were performed at emission and excitation wavelengths of 545 and 600 nm.

6) MTT assay

TC-1 cell lines were inoculated into a 96-well, flat-bottomed microplate at a volume of 100 μl (2×10⁴ cells/well) for a stationary culture. Twenty-four hours later, the medium was removed, and the cultures washed three times in PBS. Various concentrations (0, 2.5, 5, 10 and 20 μg/ml) of Radachlorin® were then added in a volume of 100 μl/well. The cultures were then subjected to laser irradiation (12.5 or 25 J/cm²), followed by the MTT assay to evaluate their sensitivity to PDT (Radachlorin®). For the MTT assay, 20 μl of MTT reagent (5 mg/ml) was added to each cell culture well and cultured for 4 h. 200 μl of DMSO was added to the culture, shaken for 10 min and the absorbance measured with an ELISA-reader at 570 nm. Measurements were performed for 6 days after the laser irradiation. Samples were assayed in triplicate, and the mean used as the measured value. The amount of Radachlorin® was also compared with the cancer cell lines.

7) Inhibition of TC-1 tumor growth in vivo

Animals were randomized into four groups (ten animals in each group): (●) control (untreated); (△) Radachlorin® only; (▲) irradiation only; (○) Radachlorin® 40 mg/kg b.w. intravenous (i.v.) injection and irradiation; (●) Radachlorin® 40 mg/kg b.w. intraperitoneal (i.p.) injection and irradiation. The TC-1 cell implanted mice were either i.v. or i.p. injected with 40 mg of Radachlorin®/kg of b.w., respectively, and PDT performed.

4) PDT

The PDT was carried out using a laser apparatus generated by a diode (Won-PDT D662, Won Technology, Daejeon, Korea) equipped with high power laser diode module, with a built in temperature control system, optical fiber bundle and fiber test module. The wavelength was set at 662±3 nm. The duration of the light irradiation, under PDT treatment, was calculated taking into account the empirically found effective dose of light energy in J/W.

5) Radachlorin® uptake by TC-1 cells in vitro

TC-1 cells were inoculated into 6 well plates, with cover glasses, in a volume of 2 ml (5×10⁴ cells/well) for a stationary culture. Twenty-four hours later, Radachlorin® (2.5, 5, 10, 20 and 50 μg/ml) was added in a volume of 2 ml. After a predetermined time, the Radachlorin® solution was discarded; the TC-1 cells were washed twice with PBS and fixed with 1% paraformaldehyde. The cells were then washed again with distilled water, the cover glasses removed from the 6 well plates and mounted on slide glass. Confocal microscope (MRC 6) MTT assay

TC-1 cell lines were inoculated into a 96-well, flat-bottomed microplate at a volume of 100 μl (2×10⁴ cells/well) for a stationary culture. Twenty-four hours later, the medium was removed, and the cultures washed three times in PBS. Various concentrations (0, 2.5, 5, 10 and 20 μg/ml) of Radachlorin® were then added in a volume of 100 μl/well. The cultures were then subjected to laser irradiation (12.5 or 25 J/cm²), followed by the MTT assay to evaluate their sensitivity to PDT (Radachlorin®). For the MTT assay, 20 μl of MTT reagent (5 mg/ml) was added to each cell culture well and cultured for 4 h. 200 μl of DMSO was added to the culture, shaken for 10 min and the absorbance measured with an ELISA-reader at 570 nm. Measurements were performed for 6 days after the laser irradiation. Samples were assayed in triplicate, and the mean used as the measured value. The amount of Radachlorin® was also compared with the cancer cell lines.

7) Inhibition of TC-1 tumor growth in vivo

Animals were randomized into four groups (ten animals in each group): (●) control (untreated); (△) Radachlorin® only; (▲) irradiation only; (○) Radachlorin® 40 mg/kg b.w. intravenous (i.v.) injection and irradiation; (●) Radachlorin® 40 mg/kg b.w. intraperitoneal (i.p.) injection and irradiation. The TC-1 cell implanted mice were either i.v. or i.p. injected with 40 mg of Radachlorin®/kg of b.w., respectively. The photodynamic treatment was carried out 24 h after the drug administration using 662 nm radiation from a diode laser. A power density of 2 W/cm² and irradiation time of 150 sec was used. The tumor sizes were evaluated for 9 days by measuring two perpendicular diameters with calipers, and the tumor size calculated based on the average dimensions. The tumors were removed on the days indicated, and frozen to -70°C until required for analysis.

RESULTS

1) Observation of Radachlorin® uptake by TC-1 cells

Fig. 2 shows the confocal microscopy of TC-1 cells after 24 h exposure to various concentrations of Radachlorin®. TC-1 cells were seen to contain Radachlorin®, which was excited to emit red to a confocal microscope. The luminescence of each cell was higher, in a Radachlorin® dose dependent manner (A-F). The Radachlorin® in the TC-1 cells showed no cytotoxicity, even with a higher concentration of 50 μg/ml (data not shown).

2) Intracellular localization of Radachlorin®

It is important to determine the biological mechanism of action of a drug; therefore, the intracellular distribution of Radachlorin® was determined in TC-1 cells. The intracellular localization of TC-1 cells after 12 h incubation with 5 μg/ml of Radachlorin® was measured by confocal microscopy (Fig.
3). The fluorescence was emitted from well-defined spots in the cytoplasm, and diffused fluorescence seen in the entire cytoplasm. The fluorescence micrographs suggested association of with the plasma membrane.

3) Antitumor effect of PDT using Radachlorin® in vitro

The efficacy of cell damage after PDT with Radachlorin® was further quantified by the MTT assay. The results of the experiment with TC-1 cells are shown in Fig. 4 (A-D). TC-1 cells incubated with various concentration of Radachlorin® and irradiated with laser showed significantly reduced cell viability with increasing light dose (B). However, when TC-1 cells were incubated with 2.5 μg/ml of Radachlorin® for 3 h, and then irradiated with 25 J/cm², the cell viability increased compared to the other Radachlorin® dosed cells (A). At the lowest light dose, 12.5 J/cm², this experiment induced an increased cell viability when Radachlorin® was dosed at 2.5 μg/ml and incubated for 3 and 12 h (C & D). Even though with a lower light dose exposure (12.5 J/cm²), the cell viability was significantly lower with an exposure time of Radachlorin® of 24 h than with 3 or 12 h (data not shown). Therefore, the optimal experimental drug dose of Radachlorin® seems to be 2.5 μg/ml for 3 h or 12 h, with irradiation of 12.5 or 50 J/cm².
Fig. 4. Cell growth-inhibitory effects of PDT on TC-1 cells \textit{in vitro}. Cells (2×10^3 cells/well) were cultured overnight in 96-well plates, in triplicate, and incubated with Radachlorin® for 3 or 12 h, with irradiation of 12.5 or 25 J/cm² at an irradiance of 20 mW/cm² using a Won-PDT D662 laser at 662 nm. After PDT, the cells were cultured for a predetermined time, and the MTT assay performed. The conditions for the TC-1 cells were (A) Radachlorin® 3h incubation, and irradiation 25 J, 20 mW (B) 12 h, and 25 J, 20 mW (C) 3 h, and 12.5 J, 20 mW (D) 12 h, and 12.5 J, 20 mW; ●, Control; ○, 2.5 μg/ml of Radachlorin®; ■, 5 μg/ml of Radachlorin®; □, 10 μg/ml of Radachlorin®; ▲, 20 μg/ml of Radachlorin®.

4) Measurement of Photodynamic effects \textit{in vivo}

The antitumor activity of PDT using Radachlorin® in C57BL/6 mice with TC-1 tumors was determined, as shown in Fig. 5. In the Irradiation and Radachlorin® only group, the tumor sizes increased over the time period. It was observed that the control group, which showed a linear increase in tumor size over the time, was similar. The PDT only group showed no cytotoxicity in the TC-1 tumor lesions. Radachlorin® itself also had no toxicity on mice (data not shown). In the PDT using Radachlorin® treatment group, when the C57BL/6 mice with TC-1 tumors were PDT irradiated using 40 mg of Radachlorin®/kg b.w. (i.p.), the tumor size was significantly reduced compared to the other experimental and PDT using 40 mg of Radachlorin®/kg b.w. (i.v.) groups. PDT with an i.p. injection of Radachlorin® group showed improved antitumor effects over those with an i.v. injection.

\textbf{DISCUSSION}

Radachlorin® has recently been shown to be a promising PDT sensitizer (23), with a report showing the photodynamic effect on novel chlorin e₆ derivatives, including Radachlorin®, on a single nerve cell (24). The study demonstrated that Radachlorin® was a most potent photosensitizer, comparable with \textit{Meso}-[tetrakis(m-hydroxyphenyl)]chlorin (mTHPC), a well-known photosensitizer (24). In this study, TC-1 cells were shown to contain Radachlorin® in a dose dependent manner, which did not affect the viability of cells compared with the values of non-Radachlorin incubated cells (data not shown). Diffused fluorescence was found in the entire cytoplasm. Localization of Radachlorin® uptake by TC-1 cells was not studied in detail in the present study. A previous report has shown that localization of intracellular photosensitizer depends on the lipophilicity and amphiphilicity of the photosensitizer (25). When incubated with cells, molecules of the photosen-
Demonstrated that Radachlorin® photosensitizers available (www.radapharma.ru). Our data also indicate that Radachlorin® is more efficient photosensitizer upon irradiation than the other photosensitizers. Thus, the accumulation of Radachlorin® in PC12 cell lines without irradiation, except with very high concentration, was seen to be adsorbed into the entire cytosol.

In a previous study, a PC12 (pheochromocytoma) cell line and the MTT test were used for in vitro assays, and laser light of 662 nm for Radachlorin® at the doses of 50 J/cm² was irradiated (21). Radachlorin® did not show toxicity on the PC12 cell lines without irradiation, except with very high concentrations. Thus, in vitro Radachlorin® is a less toxic and more efficient photosensitizer upon irradiation than the other photosensitizers available (www.radapharma.ru). Our data also demonstrated that Radachlorin® treatment showed no cytotoxicity on TC-1 cells (data not shown), which supports the findings from previous experiments (21). In the irradiation treated group without Radachlorin®, the accumulation also had no antitumor effect on mice with TC-1 tumors, as shown in Fig. 5. Therefore, these data suggested that Radachlorin® was seen to be adsorbed into the entire cytosol.

In vivo studies (21) demonstrated that Radachlorin® might have significant advantages in the selectively killing of tumor lesions in TC-1 tumors, both in vitro and in vivo.

REFERENCES

