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Purpose  Immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) has become the first-line treatment for advanced renal cell carci-
noma, despite the lack of prognostic biomarkers. Cyclin-dependent kinase 5 (CDK5) affects the tumor microenvironment, which may 
influence the efficacy of TKI+IO.   
Materials and Methods  Two cohorts from our center (Zhongshan Metastatic Renal Cell Carcinoma [ZS-MRCC] cohort, Zhongshan 
High-risk Localized Renal Cell Carcinoma [ZS-HRRCC] cohort) and one cohort from a clinical trial (JAVELIN-101) were enrolled. The 
expression of CDK5 of each sample was determined by RNA sequencing. Immune infiltration and T cell function were evaluated by 
flow cytometry and immunohistochemistry. Response and progression-free survival (PFS) were set as primary endpoints. 
Results  Patients of low CDK5 expression showed higher objective response rate (60.0% vs. 23.3%) and longer PFS in both cohorts 
(ZS-MRCC cohort, p=0.014; JAVELIN-101 cohort, p=0.040). CDK5 expression was enhanced in non-responders (p < 0.05). In the ZS-
HRRCC cohort, CDK5 was associated with decreased tumor-infiltrating CD8+ T cells, which was proved by immunohistochemistry (p < 
0.05) and flow cytometry (Spearman’s ρ=–0.49, p < 0.001). In the high CDK5 subgroup, CD8+ T cells revealed a dysfunction pheno-
type with decreased granzyme B, and more regulatory T cells were identified. A predictive score was further constructed by random 
forest, involving CDK5 and T cell exhaustion features. The RFscore was also validated in both cohorts. By utilizing the model, more 
patients might be distinguished from the overall cohort. Additionally, only in the low RFscore did TKI+IO outperform TKI monotherapy.
Conclusion  High-CDK5 expression was associated with immunosuppression and TKI+IO resistance. RFscore based on CDK5 may be 
utilized as a biomarker to determine the optimal treatment strategy. 
Key words  Renal cell carcinoma, CDK5, Immune checkpoint inhibition plus tyrosine kinase inhibition, T-cell exhaustion, T cell dys-
function
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Introduction

Renal cell carcinoma (RCC) is diagnosed annually in 
around 430,000 cases worldwide, resulting in approximately 
179,000 deaths [1]. Approximately 35% of patients were ini-
tially diagnosed with advanced or metastatic renal cell car-
cinoma (mRCC), while the remaining 65% of patients with  
localized disease. However, 30% of localized RCC patients 
will eventually relapse [2]. In the past decade, significant 
breakthroughs have been made in the treatment of mRCC. 
Recently, clinical trials of immune checkpoint inhibitor plus 
vascular endothelial growth factor receptor–tyrosine kinase 
inhibitor (TKI) for mRCC have exhibited outstanding effica-
cies [3-5]. Consequently, the European Association of Urology 

(EAU) Guideline of RCC suggests three TKI+immunotherapy 
(IO) therapies as standard first-line therapy for mRCC [6]. 
However, the objective response rate of TKI+IO therapy indi-
cated a poor prognosis for a substantial number of patients. 
This study aimed to discover prognostic biomarkers for IO/
TKI benefit according to multi-omics data of RCC.

Based on published reports, cyclin-dependent kinases 
(CDKs) participate not only in the cell cycle but also in other 
essential cellular processes, including gene transcription,  
insulin secretion, glycogen synthesis, and neuronal functions 
[7], resulting in tumor development and progression. Hence, 
we conducted the Kaplan-Meier analysis to screen the CDKs 
family in both our ZS-MRCC cohort and the TKI+IO sub-
group of the JAVELIN Renal 101 cohort (S1 Table). As a  
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result, we initially picked up the CDK5 as a candidate prog-
nostic factor. The proline-directed serine/threonine kinase 
CDK5 is known as a regulator of neuron function. CDK5 
was acting as an independent promising biomarker in lung 
adenocarcinoma [8], and colorectal cancer patients [9]. Fur-
ther investigation proved overexpression of CDK5 correlates 
with poor prognosis, tumor proliferation, migration, and  
invasion in a range of cancer types, thus playing a vital role 
in cancer development [10,11]. In recent years, it has been 
discovered that CDK5 has a remarkable role in cancer immu-
nity. CDK5 activity is essential for interferon γ (IFNG)–medi-

ated cancer immunoevasion [12]. Some studies discovered 
that the increase of interferon regulatory factor-2 (IRF2) and 
IRF2-binding protein 2 (IRF2BP2) results in decreased pro-
grammed death-ligand 1 (PD-L1) expression on tumor cells 
in the absence of CDK5 (IRF2BP2). Attenuation of CDK5 
expression in a mouse model of medulloblastoma results in 
robust CD4+ T cell-mediated tumor rejection [13]. CRISPR-
Cas9 genome editing system of CDK5 downregulates PD-
L1 expression on tumor cells and elicits potent CD8+ T cell- 
mediated immune responses in the tumor microenvironment 
(TME) with reduced regulatory T cells (Tregs) [14]. Moreo-
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Fig. 1.  Cyclin-dependent kinase 5 (CDK5) related with resistance to tyrosine kinase inhibitor (TKI) plus immunotherapy (IO) combina-
tion therapy in renal cell carcinoma (RCC). (A) Expression of CDK5 in RCC and peritumor tissues. p-values, Kruskal-Wallis H test. (B, C)  
Association between CDK5 and TNM stage/International Society of Urological Pathology (ISUP) grade in RCC. p-values, Kruskal-Wallis 
H test. (D) Expression of CDK5 between responders and non-responders of TKI+IO combination therapy in the Zhongshan Metastatic  
Renal Cell Carcinoma (ZS-MRCC) cohort. p-values, Kruskal-Wallis H test. (E, F) Therapeutic response (E) and representative chest com-
puted tomography (F) according to CDK5 in the ZS-MRCC cohort under TKI+IO combination therapy. CR, complete response; PD, pro-
gressive disease; PR, partial response; SD, stable disease.  (Continued to the next page)
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ver, CDK5 inhibition increases the level of FBXO22, which 
leads to the ubiquitination and degradation of PD-L1, hence 
weakening the immunotherapy sensitivity [15].

In this study, we evaluated CDK5 expression levels of 
renal carcinoma samples based on RNA-sequencing (RNA-
seq) data. The prognostic value CDK5 was assessed for IO/
TKI therapy, as well as its correlation with tumor microenvi-
ronment components, especially with CD8+ T cells. 

Materials and Methods

1. Study cohorts and data collection
(1) ZS-HRRCC cohort
Forty-three patients with high-risk localized RCC were 

enrolled who underwent radical nephrectomy at Zhongshan 
Hospital, Fudan University from January 2020 to December 
2021. Three patients were excluded because of the unavail-
ability of tissue samples or failure to meet sample quality 
control standards, clinical.

(2) ZS-MRCC cohort
Totally, 51 MRCC patients with TKI+IO combination 

therapy were enrolled from January 2017 to December 2020. 
Six patients were excluded due to the unavailability of tis-
sue samples or loss of follow-up. Therapeutic response and 
disease progression were defined by the Response Evalua-
tion Criteria in Solid Tumor (RECIST) ver. 1.1 criteria [16]. 
Detailed inclusion and exclusion criteria, clinical, pathologic 
information, treatment response, and survival information of 
45 patients were listed in the previous study [17,18].

(3) JAVELIN-101
The JAVELIN-101 cohort was disclosed by a clinical trial, 

enrolling 726 metastatic advanced RCC patients treated by 
either TKI+IO (avelumab+axitinib, n=354) or TKI monother-
apy (sunitinib, n=372) [3].

The Cancer Genome Atlas (TCGA) project enrolled 530 
clear cell RCC patients in the The Cancer Genome Atlas Kid-
ney Renal Clear Cell Carcinoma (TCGA-KIRC) cohort (htt-
ps://xena.ucsc.edu/) [19].

2. RNA-seq and data processing
The MagBeads Total RNA Extraction Kit (MAJORIVD) 

was used to isolate total RNA. Shanghai Biotechnology Corp. 
(Shanghai, China) was responsible for the library construc-
tion and sequencing. VAHTS Universal V6 RNA-seq Library 
Prep Kit for Illumina (Vazyme, Nanjing, China) was used for 
RNA library preparation and NovaSeq 6000 equipment (Il-
lumina, Carlsbad, CA) for sequencing. Sequencing data was 
further standardized to both fragments per kilobase of tran-
scripts per million mapped reads and read count values.

3. Hematoxylin and eosin staining and immunohistochem-
istry

Detailed primary antibodies for immunohistochemistry 
(IHC) were described in the previous study [17]. IHC was 
performed as described before [20]. Slides were scanned with 
PANNORAMIC 250 Flash III DX (3DHISTECH Ltd., Buda-
pest, Hungary). The densities of targeted cells were calculat-
ed as the mean number of cells/mm2. Three researchers were 
asked to execute the quantification on six randomized fields.

4. Flow cytometry
For surface staining, after blocking Fc receptors, single-cell 

suspensions and white blood cells were stained with fluores-
cently labeled membrane marker antibodies for 30 minutes 
at 4°C. For intracellular staining, proteins were stained with 
antibodies in Intracellular Fixation & Permeabilization Buffer 
(Thermo Fisher Scientific, Waltham, MA). Detailed primary 
antibodies for flow cytometry were used as described before 
[17]. Flowjo v10.0 was used to analyze BD LSRFortessaTM 
X-20 (BD Bio-sciences, San Jose, CA) fluorescence-activated 
cell sorting data (Tree Star, Ashland, OR).

5. In silico approaches
All analysis approaches were performed by R software 

(https://www.r-project.org/). Cox and Kaplan-Meier analy-
ses were performed by “survival” and “survminer” pack-
ages. Random forest model construction was performed by 
“randomForestSRC” and “ggRandomForests” packages. For 
volcano plot, the normalized enrichment score cutoff was 1.5. 
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Fig. 1.  (Continued from the previous page)  (G) Tumor best per-
centage change from baseline and CDK5 expression in our ZS-
MRCC cohort of TKI+IO combination therapy. *p < 0.05, **p < 
0.01, ***p < 0.001; ns, not significant.
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6. Statistical analysis
The Kruskal-Wallis H test was used to compare continu-

ous variables between groups. The categorical variables were 
used for the chi-square test. Spearman’s correlation analysis 
was utilized for quantitative correlation analysis. The cutoff 
of CDKs family was set at 50%. The cutoff of CDK5 was opti-
mized and set at 33%. All data processing was performed on 
the R software platform (R Foundation for Statistical Com-
puting, Vienna, Austria).

Results

1. CDK5 expression associated with response and progno-
sis of TKI+IO therapy

The prognostic significance of CDKs families in S1 Table. 
The latest RCC guidelines recommend TKI+IO combina-
tion therapy as the conventional first-line therapy for mRCC  
patients. However, our ZS-MRCC group showed that mRCC 
patients exhibited a variety of therapeutic effects (Fig. 1D, E 
and G). Transcriptomic data proved that expression of CDK5 
was enhanced in RCC tissues relative to non-tumorous tis-
sues (TCGA cohort) (p < 0.001) (Fig. 1A). However, we found 
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Fig. 2.  Cyclin-dependent kinase 5 (CDK5) related with prognosis of tyrosine kinase inhibitor (TKI) plus immunotherapy (IO) combina-
tion therapy in renal cell carcinoma. (A) Univariate and multivariate Cox regression model was used to calculate hazard ratio (HR) and 
95% confidence interval (CI). HR < 1 indicates better survival. The cutoff of CDK5 expression was 33%. (B, C) Progression-free survival 
after TKI+IO therapy according to CDK5 in the ZS-MRCC cohort (B) and TKI+IO subgroup of JAVELIN 101 cohort (C). cc, clear cell; IMDC, 
International Metastatic RCC Database Consortium; ZS-MRCC, Zhongshan Metastatic Renal Cell Carcinoma.  (Continued to the next page)
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no significantly different progression-free survival (PFS)  
between CDK5-low and CDK5-high TxNxM1 RCC patients 
in the TCGA cohort (data not shown). This may be owing to 

the fact that their cohorts include patients at all stages and 
the treatment was different from what it is today. Thus, we 
assessed the expression of CDK5 in various RCC stages and 
grades. CDK5 was associated with advanced TNM stage 
(stage IV) and International Society of Urological Pathology 
grade in RCC (G4) (Fig. 1B and C). Responders to TKI+IO 
revealed considerably decreased CDK5 expression (p < 0.05) 
(Fig. 1D). Meanwhile, the number of patients from low CDK5 
expression subgroup responses to TKI+IO were considerably 
elevated (Fig. 1F and G). Patients with a low CKD5 expres-
sion in our ZS-MRCC cohort had a longer PFS (p=0.014) 
(Fig. 2B) than those with a high CDK5 expression, which 
was verified in JAVELIN 101 cohort (p=0.040) (Fig. 2C). 
The cutoff was optimized and set at 33%. Further Kaplan-
Meier analysis revealed that patients with a higher CDK5 
expression had a worse progression-free survival than those 
with a lower CDK5 expression, only in the TKI+IO group 
of the JAVELIN Renal 101 cohort (p=0.04) (Fig. 2C) and in 
our ZS-MRCC cohort (p=0.014) (Fig. 2B), but not in the TKI 
monotherapy groups (Fig. 2D). Nevertheless, CDK5 was not 
predictive factor, as TKI+IO demonstrated better outcome to 
TKI monotherapy in patients with both high and low CDK5 
levels (Fig. 2E and F). Subsequently, both univariate and 
multivariate Cox regression analysis was performed. Clinical 
and pathological parameters, including age, sex, histology, 
International Metastatic RCC Database Consortium (IMDC) 
group, along with CDK5 expression were incorporated into 
the Cox regression model. Consequently, we found that 
CDK5 expression indicated poor prognosis independent of 
the above clinical and pathological parameters based on PFS 
(univariate: hazard ratio [HR], 3.199; 95% confidence interval 
[CI], 1.195 to 8.564; p=0.021; multivariate: HR, 2.841; 95% CI, 
1.037 to 7.785; p=0.042) (Fig. 2A). Collectively, these results 
indicated that the expression of CDK5 could serve as an in-
dependent adverse prognosticator for patients with TKI+IO 
treatment.

2. Association between CDK5 and TME components
By hematoxylin and eosin and immunohistochemistry, we 

identified markers of TME components, including effector 
cells, regulatory cells, regulatory chemicals, angiogenesis,  
Ki-67, and polybromo 1 (PBRM1) in our ZS-HRRCC cohort 
(Fig. 3A). Tumor infiltrating lymphocytes (TILs) did not differ 
significantly between low and high CDK5 expression groups 
(Fig. 3B), nor were TILs linked with CDK5 as determined by 
spearman analysis (data not shown). The number of CD8+  
T cells was remarkably decreased in patients with high 
CDK5 levels (p < 0.05) (Fig. 3C), and was inversely corre-
lated with the expression of CDK5 (Spearman’s ρ=–0.45, p < 
0.001, data not shown). Unexpectedly, CD4+ T cells (p=0.720) 
showed exact opposite trends, compared with CD8+ T cells 
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(p < 0.01) (Fig. 3D). 
To further investigate the immunologic state of tumor-

infiltrating T cells, we utilized flow cytometry on resected 
nephrectomy samples from our ZS-HRRCC cohort (Fig. 3E). 
Consistently, CDK5 was negatively associated with CD8+  
T cells (Spearman’s ρ=–0.49, p < 0.001) (Fig. 3F), and posi-
tively linked with CD4+ T cells (Spearman’s ρ=0.51, p < 
0.001) (Fig. 3G). The CD8+ T cells and CD4+ T cells percentage 
among total T cells were enhanced in low CDK5 and high 
CDK5 groups, respectively (p < 0.05) (Fig. 3F and G).

3. T cell dysfunction and exhaustion in high-CDK5 tumors
T cells are crucial anti-tumor mediators that identify and 

react to tumor-expressed antigens, and they have proved 
indispensable for cancer immunotherapy. Nonetheless, T 
cells are not always as anticipated as expected against can-
cer. T cells attain a dysfunctional or fatigued state defined by 
sustained expression of inhibitory receptors and a transcrip-
tional state distinct from that of functioning effector or mem-
ory T cells. Therefore, flow cytometry was used to evaluate 
the expression of granzyme B (GZMB) and programmed 
death-1 (PD-1) on CD8+ and CD4+ T cells in samples from our  
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ZS-HRRCC cohort. Although the amount of CD8+ T cells was 
reduced in individuals with high CDK5 expression (Fig. 3C 
and F), a positive connection was identified between GZMB+ 
CD8+ T cells/total T cells and CDK5 (Spearman’s=–0.51, 
p < 0.001) (Fig. 4A). Moreover, PD-1+ CD4+ T cells/total T 
cells were strongly linked with CDK5 (Spearman’s=0.44, p < 

0.001) (Fig. 4B). A significant positive connection was identi-
fied between Eomesodermin (EOMES; Spearman’s=0.52, p < 
0.001) (Fig. 5B), lymphocyte activating gene 3 (LAG3; Spear-
man’s=0.50, p < 0.001) (Fig. 5C), T-cell immunoreceptor with 
Ig and ITIM domains (TIGIT; Spearman’s=0.53, p < 0.001) 
(Fig. 5D), T cell factor 1 (TCF1; Spearman’s=0.30, p=0.060) 
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random forest model parameters, including cyclin-dependent kinase 5 (CDK5), programmed death-1 (PD-1), programmed death-ligand 
1 (PD-L1), CD8A, CD4, granzyme B (GZMB), and granzyme K (GZMK). (B) The Cox regression model was used to calculate hazard ratio 
(HR) and 95% confidence interval (CI) of random forest model parameters. HR < 1 indicates better survival with TKI+IO therapy. The 
cutoff of CDK5 expression was 75%. The cutoffs of the rest of gene expression were median values. HR > 1 indicates better survival with 
the TKI monotherapy.  (Continued to the next page)
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(Fig. 5E), and CDK5. The expression of IHC markers posi-
tive cells were normalized to tumor-infiltrating lymphocytes 
(Fig. 5A). These results indicated a potential correlation  
between CDK5 and T cell exhaustion mechanisms.

4. Tregs infiltration in high-CDK5 tumors
Immunosuppressive tumor-infiltrating cells, such as Tregs 

and macrophages, are putative regulatory mechanisms for T 
cell exhaustion. The relationship between CDK5 and Treg and 
macrophage infiltration was examined. There was a positive 
correlation between Tregs (CD4(+) CD25(+) CD127(–/low) 
cells) and CDK5 levels (evaluated by flow cytometry, Spear-
man’s ρ=0.38, p=0.02) (Fig. 4C), which was confirmed by for-
malin-fixed paraffin-embedded tissues (FoxP3 evaluated by 
IHC, Spearman’s ρ=0.30, p=0.06) (Fig. 4D). Probably due to 
the relatively limited cohort size, the p-value of IHC samples 
was close but not statistically significant. Macrophage infil-
tration showed no correlation. Macrophages could be polar-
ized into M1- or M2-macrophages under specific TME condi-
tions. Therefore, immunohistochemistry was used to detect 
M1- or M2-macrophages in the ZS-HRCC cohort. Neither M1 
nor M2 macrophages exhibited significant changes in sam-
ples with high levels of CDK5. Tregs inhibit the activity of 
cytotoxic T cells in the TME by the production of transform-
ing growth factor β (TGF-β) [21]. TGF would achieve this by 
inhibiting the expression of cytolytic gene products, such 
as granzymes B (GZMB) and K, perforin, FasL, and IFN-γ, 
from cytotoxic T cells. Spearman analysis showed that the 
expression of TGF-β was associated with CDK5 expression 
(Fig. 4E). Besides, through Gene Set Enrichment Analysis, 
we found that negative regulation of leukocyte proliferation, 
Tregs differentiation, negative regulation of leukocyte medi-
ated immunity, and negative regulation of T cell–mediated 
immunity pathways were enriched in high-CDK5 samples 
(Fig. 4F).

5. Correlation between CDK5 and somatic mutations in 
RCC

A summary of the chromosomal mutations ranked by 
CDK5 expression for the JAVELIN-101 cohort was com-
piled (Fig. 4G). Frequent mutations in localized RCC were 
observed in advanced RCC, including VHL (von Hippel-
Lindau tumor suppressor, 55%), PBRM1 (32%), and SETD2 
(SET domain containing 2, histone lysine methyltrans-
ferase, 25%). Only mammalian target of rapamycin (mTOR)  
mutation demonstrated a significant relationship with CDK5 
expression (p < 0.05) (Fig. 4G).

6. Risk model construction and contribution of components
The latest EAU Guidelines for RCC recommended TKI+IO 

combinations as standard first-line therapy and the PFS of 
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the JAVELIN 101 clinical trial suggested that TKI+IO is a pre-
ferred option for mRCC patients. However, the therapeutic 
benefits of TKI+IO varied by individual. Typically, there is 
always a portion of patients who responded unfavorably to 
TKI+IO therapy. Thus, it is necessary to build a model that 
can determine which subgroup responds best or worse to 
TKI+IO treatment. Random forest, one of the most promi-
nent machine learning algorithms, was implemented. The 
expression of CDK5, PD-1, PD-L1, CD8A, CD4, GZMB, and 
GZMK were enrolled as the parameters for model construc-
tion. The contribution of each parameter to the final model 
was further investigated (Fig. 6A). The predictive value of 
our model was subsequently validated by Kaplan-Meier. The 
cutoff was set at 75%. The results indicate that patients with 
a low signature score in our model have a longer PFS when 
treated with TKI+IO combination therapy (p < 0.001) (Fig. 
6C). This model was subsequently verified in our ZS-MRCC 
cohort (p=0.002) (Fig. 6D).

Furthermore, TKI monotherapy is an alternative first-line 
treatment for mRCC patients. Application of our model in 
mRCC to PFS data from JAVELIN Renal 101 showed in the 
low RFscore arm (≤ 75% signature score) TKI+IO combina-
tion therapy was associated with a trend toward longer PFS 
(HR, 0.55; 95% CI, 0.43 to 0.706; p=0.009) (Fig. 6B), whereas 
in the high RFscore TKI+IO and TKI alone did not differenti-
ate PFS (HR, 1.077; 95% CI, 0.720 to 1.610; p=0.719). The ran-
dom forest model showed a better function in predicting the 
prognosis of TKI+IO against TKI monotherapy for mRCC 
patients. Ultimately, Kaplan-Meier validated the predictive 
value of our model (Fig. 6E).

Discussion

From the previous results of our center, patients with 
high CDK5 expression had no statistically significant trend  
toward better OS than those with low CDK5 expression [22]. 
It was consistent with our Kaplan-Meier analysis of both  
entire cohort or M1 patients from TCGA-KIRC cohort. It is 
possible that the majority of cases enrolled were at an ear-
ly stage in our previous report. In reality, the most difficult  
aspect of RCC treatment is the patients with advanced dis-
eases. Firstly, we demonstrated that CDK5 expression serves 
as a therapeutic prognosticator for patients with mRCC  
receiving TKI+IO therapy.

Despite the fact that a portion of patients may benefit from 
TKI+IO treatment, efficiency, and drug resistance remain 
major challenges. Studies found that tumor-infiltrating cells, 
as well as cancer cells, are involved in the process of resist-
ance to cancer treatment. However, little is known about the 
underlying mechanics of these events. Immune responses 

and immunosurveillance of cancer cells are essential for  
tumor development and treatment. Immune contexture, 
which is characterized by the density, composition, function 
status, and immune cell infiltration, may be a good determi-
nant of tumor growth and therapeutic response.

Extensive gene, mRNA, and protein-level data support 
a function for CDK5 in human malignancies as well as its  
potential as a biomarker for prognosis of cancer. In non–
small cell lung cancer, breast, brain, and cancer patient tis-
sues, elevated CDK5 expression associated with advanced 
cancer stages, lymph node metastasis, and poor 5-year OS 
survival, while metastatic-free samples showed lower CDK5 
levels [23-27]. Functionally, CDK5 may contribute to onco- 
genesis via overlapping or common pathways, particu-
larly those associated with the cell cycle and proliferation. 
Through phosphorylating retinoblastoma (Rb), CDK5 regu-
lates the Rb/E2F pathway [28]. CDK5 has also been linked to 
the deregulation of signal transducer and activator of tran-
scription 3 (STAT3) in cancer cells [29], and is able to phos-
phorylate the transcription factor androgen receptor in pros-
tate cancer [30]. In breast cancer cells, CDK5 contributed to 
TGF-β1–induced epithelial-mesenchymal transition in breast 
cancer cells. TGF-β1 increased the expression of CDK5 and 
p35, while CDK5 knockdown prevented TGF-β1–induced 
epithelial-mesenchymal transition. Meanwhile, CDK5 over-
expression indicated potential synergy with TGF-β1 in driv-
ing epithelial-mesenchymal transition [24]. In lung cancer, 
blocking CDK5 with inhibitors, siRNA, or the CRISPR-Cas9 
system has provided a significant therapeutic advantage, 
suggesting that CDK5 affects tumor suppressor genes, car-
cinogenesis, cytoskeletal remodeling, and immunological 
checkpoints [31].

In medulloblastoma, CDK5 deficiency downregulates PD-
L1 by extending the half-life of the IRF2/IRF2BP2 repressor 
complex, hence promoting T cell responsiveness in medul-
loblastoma, melanoma, and breast malignancies. Moreover, 
immunotherapy in combined with CDK5 deletion enhanced 
anti-tumor immunity [13,14]. Moreover, CDK5 and PD-L1 
mRNA co-occurred and were elevated in lung adenocar-
cinoma, according to TCGA transcriptomic data sets [13]. 
CDK5 deficiency can increase PD-L1–induced CD4+ T cells 
mediated cancer cell death. The disruption of CDK5 activity 
decreases the production of IL-2 via increasing the activity 
of histone deacetylases and inhibits the binding of STAT3 to 
the Foxp3 gene promoter, which increased the population 
of CD8+ T cells while Tregs was decreased [14,32,33]. The  
abnormal activation of CDK5 is correlated with the pro-
gression of triple-negative breast cancer (TNBC). CDK5 
modulates the E3 ubiquitin ligase activity of peroxisome 
proliferator-activated receptor γ and directly protects ESRP1 
from ubiquitin-dependent proteolysis, hence enhancing the 
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stemness of TNBC cells. Reducing stemness transformation 
reverses immunosuppressive TME and improves anti–PD-1 
treatment efficacy [34]. In pancreatic cancer, the CDK1/2/5 
inhibitor dinaciclib reverses IFNG-mediated adaptive tumor 
immune resistance. This immunochemotherapeutic strat-
egy increases tumor cell apoptosis and boosts CD8+ T cell-
dependent anti-tumor immunity, in many animal models of 
pancreatic cancer [12]. Additionally, in mouse model of lung 
cancer, disruption of CDK5 increases the number of CD3+, 
CD4+, and CD8+ T cells in the spleen and decreases PD-1 
expression in CD4+ and CD8+ T cells [35]. Consequently, we 
questioned whether CDK5 regulates TKI+IO sensitivity in 
RCC by affecting TME components and T cell functions.

In the present study, we first investigated the TME of 
mRCC via RNA-seq, flow cytometry, and IHC, and verified 
the presence of T cell dysfunction within tumor tissues. In 
our ZS-HRRCC cohort, CDK5 expression was negatively 
associated with CD8+ T cells (Fig. 3C and F), and positive-
ly linked with CD4+ T cells (Fig. 3D and G). Interestingly,  
although the amount of CD8+ T cells was reduced in indi-
viduals with high CDK5 expression, a strong positive con-
nection was identified between either GZMB+ CD8+ T cells/
total T cells or PD-1+ CD4+ T cells/total T cells, and CDK5 
expression (Fig. 4A and B). Moreover, there was a positive 
correlation between Tregs and CDK5 levels, which was con-
firmed by flow cytometry (Fig. 4C and D).

Tregs are a subpopulation of immunosuppressive CD4+ T 
cells. In established tumors, however, immunosuppressive 
crosstalk between cancer cells and Tregs suppresses the func-
tion of critical effector cells. Expression of CTLA4 by Tregs 
may also inhibit the suppressive action of CD8+ T cells, hence 
initiating immunosuppressive activity in the TME [36]. 
Through the synthesis of adenosine, cancer cells additionally 
stimulate the activity of myeloid-derived suppressor cells, 
which then secrete TGF-β for further improvement of Treg 
immunosuppressive activity [37]. We revealed that CDK5 
may regulate T cell exhaustion, either directly or via Tregs, 
which may result in adverse clinical effects.

In the present study, we identified the CDK5 expression as 
a novel prognostic factor of PFS for TKI+IO combinations in 
advanced renal cell carcinoma. Moreover, CDK5 was associ-
ated with CD8+ and CD4+ infiltration and T-cell exhaustion.
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