S4 Table. Details of previous studies and our present study for nodal staging in NSCLC with normal mediastinum

Author, Year	Patient number (rN0/1)	Study design	Prevalence of pN2/3 (%)	No. of sampled LN	Sedation	ROSE	Sensitivity (95% CI)
				from N2/3 stations per			
	(== \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		F (, -)	patient			(/)
Herth et al.	100 (all rN0) ^{c)}	Prospective,	17.0	0.8	GA (78%)	No	94 (71-100)
$(2006) [1]^{a)}$		multicenter			CS (22%)		
Herth et al.	97 (all rN0) ^{c)}	Prospective,	6.2	1.6	GA	No	100 (54-100)
$(2008) [2]^{a)b)}$		multicenter					
Shingyoji et al.	113 (all rN0)	Retrospective,	17.7	1.5	CS	-	35 (15-59)
$(2014) [3]^{a)b)}$		single center					
Ong et al.	220 (all rN0)	Retrospective,	7.7	1.9	GA	Yes	41 (18-67)
$(2015) [4]^{a)b)}$		multicenter					
Shin et al.	145 (all rN0)	Retrospective,	13.1	2.4	CS	No	47 (25-71)
(2020) [5]		single center					
Hwangbo et al.	61 (rN0/1) ^{d)}	Prospective,	14.8	1.9 ^{d)}	CS	No	67 (30-93)
$(2009) [6]^{a)b)}$		single center					
Szlubowski et al.	120 (rN0/1)	Prospective,	16.7	1.3	CS	No	25 (9-49)
$(2010) [7]^{a)b)}$		single center					
Sakairi et al.	126 (rN0/1) ^{d)}	Retrospective,	18.3	-	CS	Yes	52 (31-73)
$(2013) [8]^{b)}$		single center					
Yasufuku et al.	163 (rN0/1)	Retrospective,	9.8	2.1	CS	Yes	56 (30-80)
$(2013) [9]^{a)b)}$		single center					
Oki et al.	107 (rN0/1) ^{d)}	Prospective,	11.2	2.1 ^{d)}	CS	No	25 (5-57)

(2014) [10] ^{a)b)}		single center					
Naur et al.	120 (rN0/1)	Retrospective,	17.5	2.5	GA	Yes	43 (22-66)
$(2017) [11]^{a)}$		single center					
Dooms et al.	100 (all rN1)	Prospective,	24.0	2.3	GA	Available but not	38 (18-57)
$(2015) [12]^{b)}$		multicenter				routinely performed	
Present study	279 (all rN1)	Retrospective,	29.8	2.1	CS	No	39 (28-50)
		single center					

Two meta-analysis articles [13,14] and our previous [5] and present studies are summarized in this table. However, we excluded two papers published only as abstracts and two papers without sensitivity results among 13 papers in El-Osta et al.'s meta-analysis article [13]. CI, confidence interval; CS, conscious sedation; GA, general anesthesia; LN, lymph node; NSCLC, non-small cell lung cancer; OMM, occult mediastinal metastases; pN, pathological N stage; rN, radiological N stage; ROSE, rapid on-site evaluation. ^{a)}These are nine papers included in the meta-analysis article by El-Osta et al. [13], ^{b)}These are nine papers included in the meta-analysis article by Leong et al. [14], ^{c)}These studies reported the sensitivity for detection of OMM including hilar LN metastasis. We recalculated the results for OMM based on the raw data reported by the authors, ^{d)}These studies included rN2/3 patients. The prevalence and the sensitivity for OMM in rN0/1 patients were recalculated based on the raw data reported by the authors. However, since the numbers of sampled LN from N2/3 stations per patient were reported only for all patients including rN2/3 patients, it was not possible to recalculate the value for only rN0/1 patients.

References

- 1. Herth FJ, Ernst A, Eberhardt R, Vilmann P, Dienemann H, et al. Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically normal mediastinum. Eur Respir J. 2006;28:910-4.
- 2. Herth FJ, Eberhardt R, Krasnik M, Ernst A. Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically and positron emission tomography-normal mediastinum in patients with lung cancer. Chest. 2008;133:887-91.
- 3. Shingyoji M, Nakajima T, Yoshino M, Yoshida Y, Ashinuma H, Itakura M, et al. Endobronchial ultrasonography for positron emission tomography and computed tomography-negative lymph node staging in non-small cell lung cancer. Ann Thorac Surg. 2014;98:1762-7.
- 4. Ong P, Grosu H, Eapen GA, Rodriguez M, Lazarus D, Ost D, et al. Endobronchial ultrasound-guided transbronchial needle aspiration for systematic nodal staging of lung cancer in patients with N0 disease by computed tomography and integrated positron emission tomography-computed tomography. Ann Am Thorac Soc. 2015;12:415-9.
- 5. Shin SH, Jeong BH, Jhun BW, Yoo H, Lee K, Kim H, et al. The utility of endosonography for mediastinal staging of non-small cell lung cancer in patients with radiological N0 disease. Lung Cancer. 2020;139:151-6.
- 6. Hwangbo B, Kim SK, Lee HS, Lee HS, Kim MS, Lee JM, et al. Application of endobronchial ultrasound-guided transbronchial needle aspiration following integrated PET/CT in mediastinal staging of potentially operable non-small cell lung cancer. Chest. 2009;135:1280-7.
- 7. Szlubowski A, Zielinski M, Soja J, Annema JT, Sosnicki W, Jakubiak M, et al. A combined approach of endobronchial and endoscopic ultrasound-guided needle aspiration in the radiologically normal mediastinum in non-small-cell lung cancer staging: a prospective trial. Eur J Cardiothorac Surg. 2010;37:1175-9.
- 8. Sakairi Y, Hoshino H, Fujiwara T, Nakajima T, Yasufuku K, Yoshida S, et al. Validation of EBUS-TBNA-integrated nodal staging in potentially node-positive non-small cell lung cancer. Gen Thorac Cardiovasc Surg. 2013;61:522-7.
- 9. Yasufuku K, Nakajima T, Waddell T, Keshavjee S, Yoshino I. Endobronchial ultrasound-guided transbronchial needle aspiration for differentiating N0 versus N1 lung cancer. Ann Thorac Surg. 2013;96:1756-60.
- 10. Oki M, Saka H, Ando M, Kitagawa C, Kogure Y, Seki Y. Endoscopic ultrasound-guided fine needle aspiration and endobronchial ultrasound-guided transbronchial needle aspiration: Are two better than one in mediastinal staging of non-small cell lung cancer? J Thorac Cardiovasc Surg. 2014;148:1169-77.
- 11. Naur TMH, Konge L, Clementsen PF. Endobronchial ultrasound-guided transbronchial needle aspiration for staging of patients with non-small cell lung cancer without mediastinal involvement at positron emission tomography-computed tomography. Respiration. 2017;94:279-84.

- 12. Dooms C, Tournoy KG, Schuurbiers O, Decaluwe H, De Ryck F, Verhagen A, et al. Endosonography for mediastinal nodal staging of clinical N1 non-small cell lung cancer: a prospective multicenter study. Chest. 2015;147:209-15.
- 13. El-Osta H, Jani P, Mansour A, Rascoe P, Jafri S. Endobronchial ultrasound for nodal staging of patients with non-small-cell lung cancer with radiologically normal mediastinum: a meta-analysis. Ann Am Thorac Soc. 2018;15:864-74.
- 14. Leong TL, Loveland PM, Gorelik A, Irving L, Steinfort DP. Preoperative staging by EBUS in cN0/N1 lung cancer: systematic review and meta-analysis. J Bronchology Interv Pulmonol. 2019;26:155-65.