Development and Validation of Models to Predict Lymph Node Metastasis in Early Gastric Cancer Using Logistic Regression and Gradient Boosting Machine Methods
Hae Dong Lee, Kyung Han Nam, Cheol Min Shin, Hye Seung Lee, Young Hoon Chang, Hyuk Yoon, Young Soo Park, Nayoung Kim, Dong Ho Lee, Sang-Hoon Ahn, Hyung-Ho Kim
Cancer Res Treat. 2023;55(4):1240-1249.   Published online 2023 Mar 21     DOI: https://doi.org/10.4143/crt.2022.1330
Citations to this article as recorded by Crossref logo
Intratumoural and peritumoural CT-based radiomics for diagnosing lepidic-predominant adenocarcinoma in patients with pure ground-glass nodules: a machine learning approach
Y. Zou, Q. Mao, Z. Zhao, X. Zhou, Y. Pan, Z. Zuo, W. Zhang
Clinical Radiology.2024; 79(2): e211.     CrossRef
eCura and W-eCura: different scores, different populations, same goal
Rui Morais, Diogo Libanio, João Santos-Antunes
Gut.2024; : gutjnl-2024-331924.     CrossRef
A machine learning model for predicting the lymph node metastasis of early gastric cancer not meeting the endoscopic curability criteria
Minoru Kato, Yoshito Hayashi, Ryotaro Uema, Takashi Kanesaka, Shinjiro Yamaguchi, Akira Maekawa, Takuya Yamada, Masashi Yamamoto, Shinji Kitamura, Takuya Inoue, Shunsuke Yamamoto, Takashi Kizu, Risato Takeda, Hideharu Ogiyama, Katsumi Yamamoto, Kenji Aoi,
Gastric Cancer.2024;[Epub]     CrossRef
The Application of Artificial Intelligence to Cancer Research: A Comprehensive Guide
Amin Zadeh Shirazi, Morteza Tofighi, Alireza Gharavi, Guillermo A. Gomez
Technology in Cancer Research & Treatment.2024;[Epub]     CrossRef