Skip Navigation
Skip to contents

Cancer Res Treat : Cancer Research and Treatment

OPEN ACCESS

Search

Page Path
HOME > Search
3 "Genexol-PM"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Articles
Gynecologic cancer
Safety and Tolerability of Weekly Genexol-PM, a Cremophor-Free Polymeric Micelle Formulation of Paclitaxel, with Carboplatin in Gynecologic Cancer: A Phase I Study
So Hyun Nam, Shin-Wha Lee, Young-Jae Lee, Yong Man Kim
Cancer Res Treat. 2023;55(4):1346-1354.   Published online May 15, 2023
DOI: https://doi.org/10.4143/crt.2022.1436
AbstractAbstract PDFSupplementary MaterialPubReaderePub
Purpose
This phase I study was conducted to determine the maximum tolerated dose and the recommended phase II dose of weekly administered Genexol-PM combined with carboplatin in patients with gynecologic cancer.
Materials and Methods
This open-label, phase I, dose-escalation study of weekly Genexol-PM included 18 patients with gynecologic cancer, who were equally divided into three cohorts of dose levels. Cohort 1 received 100 mg/m2 Genexol-PM and 5 area under the curve (AUC) carboplatin, cohort 2 received 120 mg/m2 Genexol-PM and 5 AUC carboplatin, and cohort 3 received 120 mg/m2 Genexol-PM and 6 AUC carboplatin. The safety and efficacy of each dose were analyzed for each cohort.
Results
Of the 18 patients, 11 patients were newly diagnosed and seven patients were recurrent cases. No dose-limiting toxicity was observed. The maximum tolerated dose was not defined, but a dose up to 120 mg/m2 of Genexol-PM in combination with AUC 5-6 of carboplatin could be recommended for a phase II study. In this intention-to-treat population, five patients dropped out of the study (carboplatin-related hypersensitivity, n=1; refusal of consent, n=4). Most patients (88.9%) with adverse events recovered without sequelae, and no treatment-related death occurred. The overall response rate of weekly Genexol-PM in combination with carboplatin was 72.2%.
Conclusion
Weekly administered Genexol-PM with carboplatin demonstrated an acceptable safety profile in gynecologic cancer pati-ents. The recommended phase II dose of weekly Genexol-PM is up to 120 mg/m2 when combined with carboplatin.

Citations

Citations to this article as recorded by  
  • Multicore, SDS-Based Polyelectrolyte Nanocapsules as Novel Nanocarriers for Paclitaxel to Reduce Cardiotoxicity by Protecting the Mitochondria
    Marzena Szwed, Anastazja Poczta-Krawczyk, Katarzyna D. Kania, Kacper Wiktorowski, Kamila Podsiadło, Agnieszka Marczak, Krzysztof Szczepanowicz
    International Journal of Molecular Sciences.2025; 26(3): 901.     CrossRef
  • Redox-responsive polymer micelles co-encapsulating immune checkpoint inhibitors and chemotherapeutic agents for glioblastoma therapy
    Zhiqi Zhang, Xiaoxuan Xu, Jiawei Du, Xin Chen, Yonger Xue, Jianqiong Zhang, Xue Yang, Xiaoyuan Chen, Jinbing Xie, Shenghong Ju
    Nature Communications.2024;[Epub]     CrossRef
  • Therapeutic impacts of GNE‑477‑loaded H2O2 stimulus‑responsive dodecanoic acid‑phenylborate ester‑dextran polymeric micelles on osteosarcoma
    Songmu Pan, Zhuan Zou, Xiaofeng Zhou, Jiyong Wei, Huijiang Liu, Zhongyi Su, Gui Liao, Guangyu Huang, Zonggui Huang, Yi Xu, Minan Lu, Ronghe Gu
    International Journal of Molecular Medicine.2024;[Epub]     CrossRef
  • Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials
    Ana Serras, Célia Faustino, Lídia Pinheiro
    Pharmaceutics.2024; 16(8): 1047.     CrossRef
  • Simplified Gambogic Acid Prodrug Nanoparticles to Improve Efficiency and Reduce Toxicity for Clinical Translation Potential
    Ruyi Wang, Yuxiao Xiao, Zhongtao Zhang, Xiaoxian Huang, Wanfang Zhu, Xiao Ma, Feng Feng, Wenyuan Liu, Lingfei Han, Wei Qu
    Advanced Healthcare Materials.2024;[Epub]     CrossRef
  • 3,357 View
  • 190 Download
  • 5 Web of Science
  • 5 Crossref
Close layer
An Open-Label, Randomized, Parallel, Phase II Trial to Evaluate the Efficacy and Safety of a Cremophor-Free Polymeric Micelle Formulation of Paclitaxel as First-Line Treatment for Ovarian Cancer: A Korean Gynecologic Oncology Group Study (KGOG-3021)
Shin-Wha Lee, Yong-Man Kim, Chi Heum Cho, Young Tae Kim, Seok Mo Kim, Soo Young Hur, Jae-Hoon Kim, Byoung-Gie Kim, Seung-Cheol Kim, Hee-Sug Ryu, Soon Beom Kang
Cancer Res Treat. 2018;50(1):195-203.   Published online March 21, 2017
DOI: https://doi.org/10.4143/crt.2016.376
AbstractAbstract PDFPubReaderePub
Purpose
Genexol-PM is a biodegradable cremophor EL–free polymeric micelle formulation of paclitaxel. Here,we compared efficacy and safety of Genexol-PM plus carboplatin versus Genexol plus carboplatin for ovarian cancer treatment.
Materials and Methods
In this multicenter, randomized, phase II study, patients with International Federation of Gynecology and Obstetrics IC-IV epithelial ovarian cancer were randomly assigned (1:1) to receive Genexol-PM 260 mg/m2 or Genexol 175 mg/m2 with 5 area under the curve carboplatin every 3weeks (6 cycles). The primary endpointwas the carbohydrate antigen 125 and Response Evaluation Criteria In Solid Tumor composite overall response rate (ORR).
Results
Of 131 enrolled patients, 98 were included in intention-to-treat analysis. Mean dosages were 260.00±0.00 mg/m2 Genexol-PM or 174.24±3.81 mg/m2 Genexol. Median followup was 18.0 months (range, 6.1 to 33.8 months). ORR was 88.0% (95% confidence interval [CI], 80.4 to 95.6) with Genexol-PM, and 77.1% (95% CI, 67.1 to 87.1) with Genexol (noninferiority threshold, 16.3%). Median time to progression was 14.8 months (95% CI, 11.3 to 20.2) with Genexol-PM and 15.4 months (95% CI, 13.2 to 29.6) with Genexol (p=0.550). Overall, six patients died. Neutropenia was the most common toxicity (incidences of 86.0% vs. 77.1%, p=0.120). Peripheral neuropathy incidences were 84.0% versus 64.6% (p= 0.148). Peripheral neuropathy of ≥ grade 3 occurred in one patient receiving Genexol. All toxicities were manageable.
Conclusion
Genexol-PM plus carboplatin as first-line treatment in patients with epithelial ovarian cancer demonstrated non-inferior efficacy and well-tolerated toxicities compared with the standard paclitaxel regimen. Further studies are warranted to optimize the dose and schedule, and to investigate long-term outcomes.

Citations

Citations to this article as recorded by  
  • Medical nanoscale materials for virus-induced cervical cancer therapeutic modalities: For targeting delivery
    Adane Adugna, Mamaru Getinet, Gashaw Azanaw Amare, Mohammed Jemal
    OpenNano.2025; 21: 100221.     CrossRef
  • From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment
    Fatemah Basingab, Omniah Alshahrani, Ibtehal Alansari, Nada Almarghalani, Nada Alshelali, Abeer Alsaiary, Najwa Alharbi, Kawther Zaher
    Breast Cancer: Targets and Therapy.2025; Volume 17: 27.     CrossRef
  • PD-L1-Targeting Nanoparticles for the Treatment of Triple-Negative Breast Cancer: A Preclinical Model
    Wendy K. Nevala, Liyi Geng, Hui Xie, Noah A. Stueven, Svetomir N. Markovic
    International Journal of Molecular Sciences.2025; 26(7): 3295.     CrossRef
  • Nano-drug delivery systems based on biodegradable polymers for the therapy of gynecological malignancies
    Keer Jin, Hanxue Zhang, Yuwei Yang, Yan Gao
    International Journal of Polymeric Materials and Polymeric Biomaterials.2024; 73(14): 1262.     CrossRef
  • Dual stimuli-responsive polymeric prodrug consisting of reversible covalent bonded celastrol for tumor targeted delivery
    Jiangtao Su, Meng Rao, Heshuang Dai, Le Cai, Fan Ye, Lu Ye, Yuchen Hu, Ban Chen, Xiaoxia Guo
    Macromolecular Research.2024; 32(2): 173.     CrossRef
  • Designing nanodiscs as versatile platforms for on-demand therapy
    Qianwen Mu, Haolan Deng, Xiaoyu An, Gang Liu, Chao Liu
    Nanoscale.2024; 16(5): 2220.     CrossRef
  • Innovative strategies for effective paclitaxel delivery: Recent developments and prospects
    Sławomir Wileński, Agnieszka Koper, Paulina Śledzińska, Marek Bebyn, Krzysztof Koper
    Journal of Oncology Pharmacy Practice.2024; 30(2): 367.     CrossRef
  • Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond
    Yalan Zhu, Lingling Xu, Yong Kang, Qinzhen Cheng, Yiling He, Xiaoyuan Ji
    Biomaterials.2024; 306: 122478.     CrossRef
  • Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion
    Fei Li, Yahong Wang, Dandan Chen, Yunjie Du
    International Journal of Molecular Sciences.2024; 25(3): 1396.     CrossRef
  • Delivery of Nucleic Acid Drugs for Tumor Therapy: Opportunities and Challenges
    Dandan Sun, Wenjia Tan, Jianan Zhao, Yafei Tian, Siqi Li, Zhiqi Zhang, Xinzhe Dong, Xiaonan Liu, Na Liu, Ping Jiao, Jie Ma
    Fundamental Research.2024;[Epub]     CrossRef
  • Effect of high-dose polymeric nanoparticle micellar paclitaxel on improved progression-free survival in patients with optimally resected stage III or IV high-grade carcinoma of the ovary: a prospective cohort study with historical controls
    Soo Jin Park, Joo-Hyuk Son, Tae-Wook Kong, Suk-Joon Chang, Hee Seung Kim
    Frontiers in Oncology.2024;[Epub]     CrossRef
  • Co-Assembly of Cancer Drugs with Cyclo-HH Peptides: Insights from Simulations and Experiments
    Anastasia Vlachou, Vijay Bhooshan Kumar, Om Shanker Tiwari, Sigal Rencus-Lazar, Yu Chen, Busra Ozguney, Ehud Gazit, Phanourios Tamamis
    ACS Applied Bio Materials.2024; 7(4): 2309.     CrossRef
  • Biomarkers in Ovarian Cancer: Towards Personalized Medicine
    Carlos López-Portugués, María Montes-Bayón, Paula Díez
    Proteomes.2024; 12(1): 8.     CrossRef
  • Internalization of transferrin-tagged Myxococcus xanthus encapsulins into mesenchymal stem cells
    Anna N. Gabashvili, Natalya A. Alexandrushkina, Elizaveta N. Mochalova, Daria V. Goliusova, Ekaterina N. Sapozhnikova, Pavel I. Makarevich, Petr I. Nikitin
    Experimental Biology and Medicine.2024;[Epub]     CrossRef
  • Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials
    Ana Serras, Célia Faustino, Lídia Pinheiro
    Pharmaceutics.2024; 16(8): 1047.     CrossRef
  • Polyesters and Polyester Nano- and Microcarriers for Drug Delivery
    Stanislaw Slomkowski, Teresa Basinska, Mariusz Gadzinowski, Damian Mickiewicz
    Polymers.2024; 16(17): 2503.     CrossRef
  • Nanotheranostics for gynecological cancers: a path forward for Africa
    Mutia Kehwalla Aza, Anavami Suberu, Mahmood Balogun, Goodness Adegbola, Mohamed Alie Sankoh, Thomas Oyediran, Nicholas Aderinto, Gbolahan Olatunji, Emmanuel Kokori, Chinonyelum Emmanuel Agbo
    Medical Oncology.2024;[Epub]     CrossRef
  • Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics
    Mahua Sarkar, Yang Wang, Oscar Ekpenyong, Dong Liang, Huan Xie
    WIREs Nanomedicine and Nanobiotechnology.2023;[Epub]     CrossRef
  • Cancer treatment and toxicity outlook of nanoparticles
    Neetika, Mamta Sharma, Pankaj Thakur, Paras Gaur, Gokana Mohana Rani, Sarvesh Rustagi, Rishi Kumar Talreja, Vishal Chaudhary
    Environmental Research.2023; 237: 116870.     CrossRef
  • Efficacy and Safety of Nanopaclitaxel Formulation for Cancer Treatment: Evidence From Randomized Clinical Trials
    Xiangmin Deng, Xiaoqin Huang, Xiaoyan Dong, Genxiang Mao, Wenmin Xing
    Nanomedicine.2023; 18(10): 833.     CrossRef
  • Development and Perspectives: Multifunctional Nucleic Acid Nanomedicines for Treatment of Gynecological Cancers
    Tetiana Korzun, Abraham S. Moses, Parham Diba, Ariana L. Sattler, Brennan Olson, Olena R. Taratula, Tanja Pejovic, Daniel L. Marks, Oleh Taratula
    Small.2023;[Epub]     CrossRef
  • Nanoprobe-based molecular imaging for tumor stratification
    Xianbin Ma, Mingchuan Mao, Jiaqi He, Chao Liang, Hai-Yan Xie
    Chemical Society Reviews.2023; 52(18): 6447.     CrossRef
  • Magic shotgun over magic bullet for treatment of ovarian cancer via polymeric nanoparticles
    Bakr Ahmed, Anuradha Sharma, Zakiya Usmani, Garima Sharma, Joga Singh, Radhika Yadav, Indu Sharma, Indu Pal Kaur
    Journal of Drug Delivery Science and Technology.2023; 88: 104945.     CrossRef
  • Safety and Tolerability of Weekly Genexol-PM, a Cremophor-Free Polymeric Micelle Formulation of Paclitaxel, with Carboplatin in Gynecologic Cancer: A Phase I Study
    So Hyun Nam, Shin-Wha Lee, Young-Jae Lee, Yong Man Kim
    Cancer Research and Treatment.2023; 55(4): 1346.     CrossRef
  • Effective Cancer Management: Inimitable Role of Phytochemical Based Nano- Formulations
    Aman Upaganlawar, Satish Polshettiwar, Sushil Raut, Amol Tagalpallewar, Vishal Pande
    Current Drug Metabolism.2022; 23(11): 869.     CrossRef
  • Comparison of triblock copolymeric micelles based on α- and ε-poly(L-lysine): a Cornelian choice
    Franck Marquet, Viorica Patrulea, Gerrit Borchard
    Polymer Journal.2022; 54(2): 199.     CrossRef
  • Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic
    Vladimir A. Ljubimov, Arshia Ramesh, Saya Davani, Moise Danielpour, Joshua J. Breunig, Keith L. Black
    Advanced Drug Delivery Reviews.2022; 181: 114033.     CrossRef
  • Nanocarriers targeting the diseases of the pancreas
    Nurbanu Demirtürk, Erem Bilensoy
    European Journal of Pharmaceutics and Biopharmaceutics.2022; 170: 10.     CrossRef
  • The development and progress of nanomedicine for esophageal cancer diagnosis and treatment
    Xiaokun Li, Lingmin Chen, Siyuan Luan, Jianfeng Zhou, Xin Xiao, Yushang Yang, Chengyi Mao, Pinhao Fang, Longqi Chen, Xiaoxi Zeng, Huile Gao, Yong Yuan
    Seminars in Cancer Biology.2022; 86: 873.     CrossRef
  • Beyond separation: Membranes towards medicine
    Ying Xie, Zhenyu Chu, Wanqin Jin
    Journal of Membrane Science Letters.2022; 2(1): 100020.     CrossRef
  • Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy
    Sajad Fakhri, Seyed Zachariah Moradi, Akram Yarmohammadi, Fatemeh Narimani, Carly E. Wallace, Anupam Bishayee
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Gold Nanorods for Drug and Gene Delivery: An Overview of Recent Advancements
    Atieh Jahangiri-Manesh, Marziyeh Mousazadeh, Shirinsadat Taji, Abbas Bahmani, Atefeh Zarepour, Ali Zarrabi, Esmaeel Sharifi, Mostafa Azimzadeh
    Pharmaceutics.2022; 14(3): 664.     CrossRef
  • Gene Therapy for Malignant and Benign Gynaecological Disorders: A Systematic Review of an Emerging Success Story
    Ekati Drakopoulou, Nicholas P. Anagnou, Kalliopi I. Pappa
    Cancers.2022; 14(13): 3238.     CrossRef
  • Engineering nanosystems to overcome barriers to cancer diagnosis and treatment
    Suhaila O. Alhaj-Suliman, Emad I. Wafa, Aliasger K. Salem
    Advanced Drug Delivery Reviews.2022; 189: 114482.     CrossRef
  • Metabolic Signatures of Surface-Modified Poly(lactic-co-glycolic acid) Nanoparticles in Differentiated THP-1 Cells Derived with Liquid Chromatography-Mass Spectrometry-based Metabolomics
    Mohammad A. Al-natour, Salah Abdelrazig, Amir M. Ghaemmaghami, Cameron Alexander, Dong-Hyun Kim
    ACS Omega.2022; 7(33): 28806.     CrossRef
  • Pathogen-derived peptides in drug targeting and its therapeutic approach
    Seok-Jun Mun, Euni Cho, Jae-Sung Kim, Chul-Su Yang
    Journal of Controlled Release.2022; 350: 716.     CrossRef
  • Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration
    Zongtai Liu, Changfeng Fu
    Frontiers in Bioengineering and Biotechnology.2022;[Epub]     CrossRef
  • Engineering the Tumor Immune Microenvironment through Minimally Invasive Interventions
    Koustav Pal, Rahul A. Sheth
    Cancers.2022; 15(1): 196.     CrossRef
  • Nanoparticle delivery systems to combat drug resistance in ovarian cancer
    Emily M. Miller, Timothy M. Samec, Angela A. Alexander-Bryant
    Nanomedicine: Nanotechnology, Biology and Medicine.2021; 31: 102309.     CrossRef
  • Engineering precision nanoparticles for drug delivery
    Michael J. Mitchell, Margaret M. Billingsley, Rebecca M. Haley, Marissa E. Wechsler, Nicholas A. Peppas, Robert Langer
    Nature Reviews Drug Discovery.2021; 20(2): 101.     CrossRef
  • Clinical applications of nanomedicines in lung cancer treatment
    Mohammad Norouzi, Pierre Hardy
    Acta Biomaterialia.2021; 121: 134.     CrossRef
  • Lyophilization stabilizes clinical‐stage core‐crosslinked polymeric micelles to overcome cold chain supply challenges
    Tarun Ojha, Qizhi Hu, Claudio Colombo, Jan Wit, Michiel van Geijn, Mies J. van Steenbergen, Mahsa Bagheri, Hiltrud Königs‐Werner, Eva Miriam Buhl, Ruchi Bansal, Yang Shi, Wim E. Hennink, Gert Storm, Cristianne J. F. Rijcken, Twan Lammers
    Biotechnology Journal.2021;[Epub]     CrossRef
  • Development of next generation nanomedicine-based approaches for the treatment of cancer: we've barely scratched the surface
    Shannon R. Tracey, Peter Smyth, Caroline J. Barelle, Christopher J. Scott
    Biochemical Society Transactions.2021; 49(5): 2253.     CrossRef
  • Impact of Value Frameworks on the Magnitude of Clinical Benefit: Evaluating a Decade of Randomized Trials for Systemic Therapy in Solid Malignancies
    Ellen Cusano, Chelsea Wong, Eddy Taguedong, Marcus Vaska, Tasnima Abedin, Nancy Nixon, Safiya Karim, Patricia Tang, Daniel Y. C. Heng, Doreen Ezeife
    Current Oncology.2021; 28(6): 4894.     CrossRef
  • Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors
    Elizabeth Alejandra Motolinía-Alcántara, Carlos Omar Castillo-Araiza, Mario Rodríguez-Monroy, Angélica Román-Guerrero, Francisco Cruz-Sosa
    Plants.2021; 10(12): 2762.     CrossRef
  • Clinical applications of nanomedicine in cancer therapy
    Mohammad Norouzi, Mehrnaz Amerian, Mahshid Amerian, Fatemeh Atyabi
    Drug Discovery Today.2020; 25(1): 107.     CrossRef
  • Targeting and extending the eukaryotic druggable genome with natural products: cytoskeletal targets of natural products
    April L. Risinger, Lin Du
    Natural Product Reports.2020; 37(5): 634.     CrossRef
  • Improvement of Paclitaxel-Associated Adverse Reactions (ADRs) via the Use of Nano-Based Drug Delivery Systems: A Systematic Review and Network Meta-Analysis


    Pi-Ling Chou, Ya-Ping Huang, Meng-Hsuan Cheng, Kun-Ming Rau, Yi-Ping Fang
    International Journal of Nanomedicine.2020; Volume 15: 1731.     CrossRef
  • Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval
    Duhyeong Hwang, Jacob D. Ramsey, Alexander V. Kabanov
    Advanced Drug Delivery Reviews.2020; 156: 80.     CrossRef
  • Nanoparticles in precision medicine for ovarian cancer: From chemotherapy to immunotherapy
    Yuan Li, Yan Gao, Xi Zhang, Hongyan Guo, Huile Gao
    International Journal of Pharmaceutics.2020; 591: 119986.     CrossRef
  • Synthesis of PCL–PEG–PCL Triblock Copolymer via Organocatalytic Ring-Opening Polymerization and Its Application as an Injectable Hydrogel—An Interdisciplinary Learning Trial
    Kaiting Wu, Lin Yu, Jiandong Ding
    Journal of Chemical Education.2020; 97(11): 4158.     CrossRef
  • Phytochemical-Based Nanomedicine for Advanced Cancer Theranostics: Perspectives on Clinical Trials to Clinical Use


    Madhusmita Dhupal, Devasish Chowdhury
    International Journal of Nanomedicine.2020; Volume 15: 9125.     CrossRef
  • Synthesis and anti-cancer evaluation of folic acid-peptide- paclitaxel conjugates for addressing drug resistance
    Yuxuan Dai, Xingguang Cai, Xinzhou Bi, Chunxia Liu, Na Yue, Ying Zhu, Jiaqi Zhou, Mian Fu, Wenlong Huang, Hai Qian
    European Journal of Medicinal Chemistry.2019; 171: 104.     CrossRef
  • A Phase II Study of Genexol-PM and Cisplatin as Induction Chemotherapy in Locally Advanced Head and Neck Squamous Cell Carcinoma
    Bhumsuk Keam, Keun-Wook Lee, Se-Hoon Lee, Jin-Soo Kim, Jin Ho Kim, Hong-Gyun Wu, Keun-Yong Eom, Suzy Kim, Soon-Hyun Ahn, Eun-Jae Chung, Seong Keun Kwon, Woo-Jin Jeong, Young Ho Jung, Ji-Won Kim, Dae Seog Heo
    The Oncologist.2019; 24(6): 751.     CrossRef
  • Polymeric Hybrid Nanomicelles for Cancer Theranostics: An Efficient and Precise Anticancer Strategy for the Codelivery of Doxorubicin/miR-34a and Magnetic Resonance Imaging
    Xiaoxue Xie, Yu Chen, Zhongyuan Chen, Yi Feng, Jing Wang, Tingting Li, Shun Li, Xiang Qin, Chunhui Wu, Chuan Zheng, Jie Zhu, Fengming You, Yiyao Liu, Hong Yang
    ACS Applied Materials & Interfaces.2019; 11(47): 43865.     CrossRef
  • Micellar paclitaxel in the treatment of patients with tumors of the female reproductive system
    A. G. Kedrova, S. E. Krasilnikov, D. A. Astakhov, V. V. Kosyy
    Tumors of female reproductive system.2019; 15(3): 37.     CrossRef
  • Improving Drug Delivery of Micellar Paclitaxel against Non‐Small Cell Lung Cancer by Coloading Itraconazole as a Micelle Stabilizer and a Tumor Vascular Manipulator
    Ling Zhang, Zhengsheng Liu, Chao Kong, Chun Liu, Kuan Yang, Huijun Chen, Jinfeng Huang, Feng Qian
    Small.2018;[Epub]     CrossRef
  • 13,783 View
  • 362 Download
  • 60 Web of Science
  • 57 Crossref
Close layer
An Open-Label, Randomized, Parallel, Phase III Trial Evaluating the Efficacy and Safety of Polymeric Micelle-Formulated Paclitaxel Compared to Conventional Cremophor EL-Based Paclitaxel for Recurrent or Metastatic HER2-Negative Breast Cancer
In Hae Park, Joo Hyuk Sohn, Sung Bae Kim, Keun Seok Lee, Joo Seop Chung, Soo Hyeon Lee, Tae You Kim, Kyung Hae Jung, Eun Kyung Cho, Yang Soo Kim, Hong Suk Song, Jae Hong Seo, Hun Mo Ryoo, Sun Ah Lee, So Young Yoon, Chul Soo Kim, Yong Tai Kim, Si Young Kim, Mi Ryung Jin, Jungsil Ro
Cancer Res Treat. 2017;49(3):569-577.   Published online September 12, 2016
DOI: https://doi.org/10.4143/crt.2016.289
AbstractAbstract PDFPubReaderePub
Purpose
Genexol-PM is a Cremophor EL–free formulation of low-molecular-weight, non-toxic, and biodegradable polymeric micelle-bound paclitaxel. We conducted a phase III study comparing the clinical efficacy and toxicity of Genexol-PM with conventional paclitaxel (Genexol).
Materials and Methods
Patients were randomly assigned (1:1) to receive Genexol-PM 260 mg/m2 or Genexol 175 mg/m2 intravenously every 3 weeks. The primary outcome was the objective response rate (ORR).
Results
The study enrolled 212 patients, of whom 105 were allocated to receive Genexol-PM. The mean received dose intensity of Genexol-PM was 246.8±21.3 mg/m2 (95.0%), and that of Genexol was 168.3±10.6 mg/m2 (96.2%). After a median follow-up of 24.5 months (range, 0.0 to 48.7 months), the ORR of Genexol-PM was 39.1% (95% confidence interval [CI], 31.2 to 46.9) and the ORR of Genexol was 24.3% (95% CI, 17.5 to 31.1) (pnon-inferiority=0.021, psuperiority=0.016). The two groups did not differ significantly in overall survival (28.8 months for Genexol-PM vs. 23.8 months for Genexol; p=0.52) or progression-free survival (8.0 months for Genexol-PM vs. 6.7 months for Genexol; p=0.26). In both groups, the most common toxicities were neutropenia, with 68.6% occurrence in the Genexol-PM group versus 40.2% in the Genexol group (p < 0.01). The incidences of peripheral neuropathy of greater than grade 2 did not differ significantly between study treatments.
Conclusion
Compared with standard paclitaxel, Genexol-PM demonstrated non-inferior and even superior clinical efficacy with a manageable safety profile in patients with metastatic breast cancer.

Citations

Citations to this article as recorded by  
  • Revolutionizing cancer treatment: ROS-induced apoptosis via nanoformulated alkaloids
    Swathi Putta, Santhosh Kumar Chinnaiyan, Ramadevi Korni, Venkata Radha Gadela
    Journal of Drug Delivery Science and Technology.2025; 104: 106556.     CrossRef
  • A drug-eluting balloon catheter coated with chitosan and paclitaxel-loaded poloxamer-stabilized PLA microparticles for the effective treatment of cholangiocarcinoma
    Jin Sil Lee, Jaehee Jang, Hyeryeon Oh, Eunhye Lee, Don Haeng Lee, Panmo Son, Daekyung Sung, Won Il Choi
    Journal of Industrial and Engineering Chemistry.2025;[Epub]     CrossRef
  • Nanomicellar Prodrug Delivery of Glucose-Paclitaxel: A Strategy to Mitigate Paclitaxel Toxicity
    Didi Yan, Xinyue Ma, Yixin Hu, Guogang Zhang, Beibei Hu, Bo Xiang, Xiaokun Cheng, Yongshuai Jing, Xi Chen
    International Journal of Nanomedicine.2025; Volume 20: 2087.     CrossRef
  • Emerging phytochemical-based nanocarriers: redefining the perspectives of breast cancer therapy
    Gulshan Sharma, Rohil Panwar, Sanskriti Saini, Hardeep Singh Tuli, Karan Wadhwa, Rakesh Pahwa
    Naunyn-Schmiedeberg's Archives of Pharmacology.2025;[Epub]     CrossRef
  • Administration of Inhibitory Molecules through Nanoparticles in Breast Cancer Therapy
    Christian Rafael Quijia, Andreina Quevedo Enríquez, Carlos Daniel Zappia, Roxana Noemí Peroni, Marlus Chorilli
    Current Medicinal Chemistry.2024; 31(6): 726.     CrossRef
  • Innovative strategies for effective paclitaxel delivery: Recent developments and prospects
    Sławomir Wileński, Agnieszka Koper, Paulina Śledzińska, Marek Bebyn, Krzysztof Koper
    Journal of Oncology Pharmacy Practice.2024; 30(2): 367.     CrossRef
  • Effect of zwitterionic sulfobetaine incorporation on blood behaviours, phagocytosis, and in vivo biodistribution of pH-responsive micelles with positive charges
    Chengwei Wang, Hao Liu, Hu Lin, Rui Zhong, Hao Li, Jiaxin Liu, Xianglin Luo, Meng Tian
    Journal of Materials Chemistry B.2024; 12(6): 1652.     CrossRef
  • Reexamining in vivo fate of paclitaxel-loaded polymeric micelles
    Shiqi Lin, Yifei Yu, Ercan Wu, Tianhao Ding, Yuxiu Chu, Feng Pan, Yang Yang, Changyou Zhan
    Nano Today.2024; 56: 102255.     CrossRef
  • Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials
    Ana Serras, Célia Faustino, Lídia Pinheiro
    Pharmaceutics.2024; 16(8): 1047.     CrossRef
  • Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy
    Giuseppe Longobardi, Thomas Lee Moore, Claudia Conte, Francesca Ungaro, Ronit Satchi‐Fainaro, Fabiana Quaglia
    WIREs Nanomedicine and Nanobiotechnology.2024;[Epub]     CrossRef
  • Research progress of paclitaxel nanodrug delivery system in the treatment of triple-negative breast cancer
    Jia-xin Qiao, Dong-yan Guo, Huan Tian, Zhan-peng Wang, Qiang-qiang Fan, Yuan Tian, Jing Sun, Xiao-fei Zhang, Jun-bo Zou, Jiang-xue Cheng, Fei Luan, Bing-tao Zhai
    Materials Today Bio.2024; 29: 101358.     CrossRef
  • Nanotechnology in cancer therapeutics, diagnosis, and management
    Disha Hazarika, Sumit Sarma, Priyanka Shankarishan
    BioTechnologia.2024; 105(3): 287.     CrossRef
  • Microwave‐Assisted Synthesis of Porous Biomolecule‐Incorporated Metal‐Organic Frameworks as Efficient Nanocarriers for Anti‐Cancer Drugs
    Trang Thi Thu Nguyen, Bao Quang Gia Le, Vy Tran Hanh Nguyen, Jae‐Hyoung Lee, Ngoc Xuan Dat Mai, Linh Ho Thuy Nguyen, Tan Le Hoang Doan
    ChemistrySelect.2023;[Epub]     CrossRef
  • Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo‐ and radioresistances
    Prithwish Kola, Prasanth Kumar Bhusetty Nagesh, Pritam Kumar Roy, K. Deepak, Rui Luis Reis, Subhas C. Kundu, Mahitosh Mandal
    WIREs Nanomedicine and Nanobiotechnology.2023;[Epub]     CrossRef
  • Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives
    Mangala Hegde, Nikunj Naliyadhara, Jyothsna Unnikrishnan, Mohammed S. Alqahtani, Mohamed Abbas, Sosmitha Girisa, Gautam Sethi, Ajaikumar B. Kunnumakkara
    Cancer Letters.2023; 556: 216066.     CrossRef
  • Influence of lung cancer model characteristics on tumor targeting behavior of nanodrugs
    Weixia Xu, Shengmin Yang, Linwei Lu, Qianzhu Xu, Sunyi Wu, Jianfen Zhou, Jiashen Lu, Xingyan Fan, Nana Meng, Yuan Ding, Xudong Zheng, Weiyue Lu
    Journal of Controlled Release.2023; 354: 538.     CrossRef
  • Metastatic Breast Cancer: Review of Emerging Nanotherapeutics
    Ranga Dissanayake, Rheal Towner, Marya Ahmed
    Cancers.2023; 15(11): 2906.     CrossRef
  • Efficacy and Safety of Nanopaclitaxel Formulation for Cancer Treatment: Evidence From Randomized Clinical Trials
    Xiangmin Deng, Xiaoqin Huang, Xiaoyan Dong, Genxiang Mao, Wenmin Xing
    Nanomedicine.2023; 18(10): 833.     CrossRef
  • Combination Therapy as a Promising Way to Fight Oral Cancer
    João P. N. Silva, Bárbara Pinto, Luís Monteiro, Patrícia M. A. Silva, Hassan Bousbaa
    Pharmaceutics.2023; 15(6): 1653.     CrossRef
  • Nano delivery system for paclitaxel: Recent advances in cancer theranostics
    Na Ying, Sisi Liu, Mengmeng Zhang, Jing Cheng, Linghuan Luo, Jiayi Jiang, Gaofan Shi, Shu Wu, Jun Ji, Haoyuan Su, Hongzhi Pan, Dongdong Zeng
    Colloids and Surfaces B: Biointerfaces.2023; 228: 113419.     CrossRef
  • Current Perspectives on Paclitaxel: Focus on Its Production, Delivery and Combination Therapy
    Yibin Liu, Fenglan Zhao, Qibao Wang, Qingjie Zhao, Guige Hou, Qingguo Meng
    Mini-Reviews in Medicinal Chemistry.2023; 23(18): 1780.     CrossRef
  • Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review
    Sheng Sun, Ye-hui Wang, Xiang Gao, He-yong Wang, Lu Zhang, Na Wang, Chun-mei Li, Shao-quan Xiong
    Frontiers in Bioengineering and Biotechnology.2023;[Epub]     CrossRef
  • Paclitaxel prodrug-encapsulated polypeptide micelles with redox/pH dual responsiveness for cancer chemotherapy
    Jinyu Liu, Yanhao Zhang, Chao Liu, Yuhao Jiang, Zihao Wang, Xinsong Li
    International Journal of Pharmaceutics.2023; 645: 123398.     CrossRef
  • Biodegradable polyester-based nano drug delivery system in cancer chemotherapy: a review of recent progress (2021–2023)
    Zongheng Wang, Miaomiao Xiao, Fangliang Guo, Yue Yan, Hong Tian, Qianshi Zhang, Shuangyi Ren, Liqun Yang
    Frontiers in Bioengineering and Biotechnology.2023;[Epub]     CrossRef
  • Comparison of triblock copolymeric micelles based on α- and ε-poly(L-lysine): a Cornelian choice
    Franck Marquet, Viorica Patrulea, Gerrit Borchard
    Polymer Journal.2022; 54(2): 199.     CrossRef
  • Current understandings and clinical translation of nanomedicines for breast cancer therapy
    Yike Jiang, Ziyi Jiang, Mingzhe Wang, Lan Ma
    Advanced Drug Delivery Reviews.2022; 180: 114034.     CrossRef
  • Poly(ϵ-Caprolactone)-Methoxypolyethylene Glycol (PCL-MPEG)-Based Micelles for Drug-Delivery: The Effect of PCL Chain Length on Blood Components, Phagocytosis, and Biodistribution
    Zemin Hou, Wencheng Zhou, Xi Guo, Rui Zhong, Ao Wang, Jiehua Li, Ying Cen, Chao You, Hong Tan, Meng Tian
    International Journal of Nanomedicine.2022; Volume 17: 1613.     CrossRef
  • Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy
    Prashant Pandey, Dilip Kumar Arya, Mohan Kumar Ramar, Kumarappan Chidambaram, P.S. Rajinikanth
    Drug Discovery Today.2022; 27(9): 2526.     CrossRef
  • Biophysical Characterization of Interactions between Serum Albumin and Block Copolymer Micelles
    Catherine F. Dial, Richard A. Gemeinhart
    ACS Biomaterials Science & Engineering.2022; 8(7): 2899.     CrossRef
  • Micelles in Cancer Therapy: An Update on Preclinical and Clinical Status
    Rabia Aqeel, Nidhi Srivastava, Poonam Kushwaha
    Recent Patents on Nanotechnology.2022; 16(4): 283.     CrossRef
  • Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers
    Juanjuan Yang, Xiaojin Wang, Bingshun Wang, Kinam Park, Karen Wooley, Shiyi Zhang
    Advanced Drug Delivery Reviews.2022; 190: 114525.     CrossRef
  • In Vivo Sustained Release of the Retrograde Transport Inhibitor Retro-2.1 Formulated in a Thermosensitive Hydrogel
    Robin Vinck, Laetitia Anvi Nguyen, Mathilde Munier, Lucie Caramelle, Diana Karpman, Julien Barbier, Alain Pruvost, Jean-Christophe Cintrat, Daniel Gillet
    International Journal of Molecular Sciences.2022; 23(23): 14611.     CrossRef
  • Clinical Translation of Self‐Assembled Cancer Nanomedicines
    Peng Mi, Kanjiro Miyata, Kazunori Kataoka, Horacio Cabral
    Advanced Therapeutics.2021;[Epub]     CrossRef
  • From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review
    Guillermo Valdivia, Ángela Alonso-Diez, Dolores Pérez-Alenza, Laura Peña
    Frontiers in Veterinary Science.2021;[Epub]     CrossRef
  • Advanced Biotechnologies: Collections of Plant Cell Cultures As a Basis for Development and Production of Medicinal Preparations
    E. V. Popova, A. V. Nosov, M. V. Titova, D. V. Kochkin, A. A. Fomenkov, I. E. Kulichenko, A. M. Nosov
    Russian Journal of Plant Physiology.2021; 68(3): 385.     CrossRef
  • Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation
    Xin Luan, Hebao Yuan, Yudong Song, Hongxiang Hu, Bo Wen, Miao He, Huixia Zhang, Yan Li, Feng Li, Pan Shu, Joseph P. Burnett, Nathan Truchan, Maria Palmisano, Manjunath P. Pai, Simon Zhou, Wei Gao, Duxin Sun
    Biomaterials.2021; 275: 120910.     CrossRef
  • Breast cancer: Muscarinic receptors as new targets for tumor therapy
    Alejandro Español, Agustina Salem, Yamila Sanchez, María Elena Sales
    World Journal of Clinical Oncology.2021; 12(6): 404.     CrossRef
  • Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines
    Lenka Loukotová, Pavel Švec, Ondřej Groborz, Tomáš Heizer, Hynek Beneš, Helena Raabová, Tereza Bělinová, Vít Herynek, Martin Hrubý
    Macromolecules.2021; 54(17): 8182.     CrossRef
  • Challenges towards Targeted Drug Delivery in Cancer Nanomedicines
    Muhammad Nadeem Hafeez, Christian Celia, Vilma Petrikaite
    Processes.2021; 9(9): 1527.     CrossRef
  • Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature
    Kah Min Yap, Mahendran Sekar, Shivkanya Fuloria, Yuan Seng Wu, Siew Hua Gan, Nur Najihah Izzati Mat Rani, Vetriselvan Subramaniyan, Chandrakant Kokare, Pei Teng Lum, M Yasmin Begum, Shankar Mani, Dhanalekshmi Unnikrishnan Meenakshi, Kathiresan V Sathasiva
    International Journal of Nanomedicine.2021; Volume 16: 7891.     CrossRef
  • Phase II study of DHP107 (oral paclitaxel) in the first-line treatment of HER2-negative recurrent or metastatic breast cancer (OPTIMAL study)
    Sung-Bae Kim, Jae Hong Seo, Jin-Hee Ahn, Tae-Yong Kim, Seok Yun Kang, Joohyuk Sohn, Yaewon Yang, Kyong Hwa Park, Yong Wha Moon, Seungtaek Lim, Myoung Joo Kang, Koung Eun Yoon, Hyun Ju Cho, Keun Seok Lee
    Therapeutic Advances in Medical Oncology.2021;[Epub]     CrossRef
  • Self-assembly of oxidation-responsive polyethylene glycol-paclitaxel prodrug for cancer chemotherapy
    Chengyuan Dong, Quan Zhou, Jiajia Xiang, Fusheng Liu, Zhuxian Zhou, Youqing Shen
    Journal of Controlled Release.2020; 321: 529.     CrossRef
  • Clinical applications of nanomedicine in cancer therapy
    Mohammad Norouzi, Mehrnaz Amerian, Mahshid Amerian, Fatemeh Atyabi
    Drug Discovery Today.2020; 25(1): 107.     CrossRef
  • Improvement of Paclitaxel-Associated Adverse Reactions (ADRs) via the Use of Nano-Based Drug Delivery Systems: A Systematic Review and Network Meta-Analysis


    Pi-Ling Chou, Ya-Ping Huang, Meng-Hsuan Cheng, Kun-Ming Rau, Yi-Ping Fang
    International Journal of Nanomedicine.2020; Volume 15: 1731.     CrossRef
  • Quality of adverse event reporting in phase III randomized controlled trials of breast and colorectal cancer: A systematic review
    Adam S. Komorowski, Helen J. MacKay, Rossanna C. Pezo
    Cancer Medicine.2020; 9(14): 5035.     CrossRef
  • Nanotechnology for angiogenesis: opportunities and challenges
    Saeid Kargozar, Francesco Baino, Sepideh Hamzehlou, Michael R. Hamblin, Masoud Mozafari
    Chemical Society Reviews.2020; 49(14): 5008.     CrossRef
  • Furry nanoparticles: synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles and their robust stability in vivo
    Rena Tanaka, Koichi Arai, Jun Matsuno, Miyo Soejima, Ji Ha Lee, Rintaro Takahashi, Kazuo Sakurai, Shota Fujii
    Polymer Chemistry.2020; 11(27): 4408.     CrossRef
  • Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval
    Duhyeong Hwang, Jacob D. Ramsey, Alexander V. Kabanov
    Advanced Drug Delivery Reviews.2020; 156: 80.     CrossRef
  • What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right
    Duxin Sun, Simon Zhou, Wei Gao
    ACS Nano.2020; 14(10): 12281.     CrossRef
  • Synthesis of PCL–PEG–PCL Triblock Copolymer via Organocatalytic Ring-Opening Polymerization and Its Application as an Injectable Hydrogel—An Interdisciplinary Learning Trial
    Kaiting Wu, Lin Yu, Jiandong Ding
    Journal of Chemical Education.2020; 97(11): 4158.     CrossRef
  • Phytochemical-Based Nanomedicine for Advanced Cancer Theranostics: Perspectives on Clinical Trials to Clinical Use


    Madhusmita Dhupal, Devasish Chowdhury
    International Journal of Nanomedicine.2020; Volume 15: 9125.     CrossRef
  • A Compressive Review about Taxol®: History and Future Challenges
    Julia Gallego-Jara, Gema Lozano-Terol, Rosa Alba Sola-Martínez, Manuel Cánovas-Díaz, Teresa de Diego Puente
    Molecules.2020; 25(24): 5986.     CrossRef
  • Recent Clinical Developments of Nanomediated Drug Delivery Systems of Taxanes for the Treatment of Cancer
    Ruben AG van Eerden, Ron HJ Mathijssen, Stijn LW Koolen
    International Journal of Nanomedicine.2020; Volume 15: 8151.     CrossRef
  • Basic principles of drug delivery systems – the case of paclitaxel
    S. Ezrahi, A. Aserin, N. Garti
    Advances in Colloid and Interface Science.2019; 263: 95.     CrossRef
  • Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces
    Saziye Yorulmaz Avsar, Myrto Kyropoulou, Stefano Di Leone, Cora-Ann Schoenenberger, Wolfgang P. Meier, Cornelia G. Palivan
    Frontiers in Chemistry.2019;[Epub]     CrossRef
  • Polyester Nanoparticle Encapsulation Mitigates Paclitaxel-Induced Peripheral Neuropathy
    R. Ganugula, M. Deng, M. Arora, H.-L. Pan, M. N. V. Ravi Kumar
    ACS Chemical Neuroscience.2019; 10(3): 1801.     CrossRef
  • PEGylation of Ginsenoside Rg3-Entrapped Bovine Serum Albumin Nanoparticles: Preparation, Characterization, and In Vitro Biological Studies
    Lijun Zhang, Junfeng Hui, Pei Ma, Yu Mi, Daidi Fan, Chenhui Zhu, Lei Chi, Yanan Dong
    Journal of Nanomaterials.2019; 2019: 1.     CrossRef
  • Prevention of paclitaxel-induced neuropathy by formulation approach
    Xiaowei Zang, Jong Bong Lee, Kiran Deshpande, Olga B. Garbuzenko, Tamara Minko, Leonid Kagan
    Journal of Controlled Release.2019; 303: 109.     CrossRef
  • Current status of nanomedicine in the chemotherapy of breast cancer
    A. I. Fraguas-Sánchez, C. Martín-Sabroso, A. Fernández-Carballido, A. I. Torres-Suárez
    Cancer Chemotherapy and Pharmacology.2019; 84(4): 689.     CrossRef
  • A Phase II Study of Genexol-PM and Cisplatin as Induction Chemotherapy in Locally Advanced Head and Neck Squamous Cell Carcinoma
    Bhumsuk Keam, Keun-Wook Lee, Se-Hoon Lee, Jin-Soo Kim, Jin Ho Kim, Hong-Gyun Wu, Keun-Yong Eom, Suzy Kim, Soon-Hyun Ahn, Eun-Jae Chung, Seong Keun Kwon, Woo-Jin Jeong, Young Ho Jung, Ji-Won Kim, Dae Seog Heo
    The Oncologist.2019; 24(6): 751.     CrossRef
  • Advances in thermosensitive polymer-grafted platforms for biomedical applications
    Phung Ngan Le, Chan Khon Huynh, Ngoc Quyen Tran
    Materials Science and Engineering: C.2018; 92: 1016.     CrossRef
  • Supramolecular polymeric chemotherapy based on cucurbit[7]uril-PEG copolymer
    Hao Chen, Yueyue Chen, Han Wu, Jiang-Fei Xu, Zhiwei Sun, Xi Zhang
    Biomaterials.2018; 178: 697.     CrossRef
  • pH/NIR-Responsive Polypyrrole-Functionalized Fibrous Localized Drug-Delivery Platform for Synergistic Cancer Therapy
    Arjun Prasad Tiwari, Tae In Hwang, Jung-Mi Oh, Bikendra Maharjan, Sungkun Chun, Beom Su Kim, Mahesh Kumar Joshi, Chan Hee Park, Cheol Sang Kim
    ACS Applied Materials & Interfaces.2018; 10(24): 20256.     CrossRef
  • The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Cancer Drug Delivery
    Xuanrong Sun, Guowei Wang, Hao Zhang, Shiqi Hu, Xin Liu, Jianbin Tang, Youqing Shen
    ACS Nano.2018; 12(6): 6179.     CrossRef
  • Different Nanoformulations Alter the Tissue Distribution of Paclitaxel, Which Aligns with Reported Distinct Efficacy and Safety Profiles
    Feng Li, Huixia Zhang, Miao He, Jinhui Liao, Nianhang Chen, Yan Li, Simon Zhou, Maria Palmisano, Alex Yu, Manjunath P. Pai, Hebao Yuan, Duxin Sun
    Molecular Pharmaceutics.2018; 15(10): 4505.     CrossRef
  • Emerging advances in P-glycoprotein inhibitory nanomaterials for drug delivery
    Longfa Kou, Rui Sun, Yangzom D. Bhutia, Qing Yao, Ruijie Chen
    Expert Opinion on Drug Delivery.2018; 15(9): 869.     CrossRef
  • The battle of “nano” paclitaxel
    Alexandros Marios Sofias, Michael Dunne, Gert Storm, Christine Allen
    Advanced Drug Delivery Reviews.2017;[Epub]     CrossRef
  • Overcoming the Road Blocks: Advancement of Block Copolymer Micelles for Cancer Therapy in the Clinic
    Loujin Houdaihed, James C. Evans, Christine Allen
    Molecular Pharmaceutics.2017; 14(8): 2503.     CrossRef
  • PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application
    Philip Grossen, Dominik Witzigmann, Sandro Sieber, Jörg Huwyler
    Journal of Controlled Release.2017; 260: 46.     CrossRef
  • Effect of Thermoresponsive Poly(L-lactic acid)–poly(ethylene glycol) Gel Injection on Left Ventricular Remodeling in a Rat Myocardial Infarction Model
    Shota Somekawa, Atsushi Mahara, Kazunari Masutani, Yoshiharu Kimura, Hiroshi Urakawa, Tetsuji Yamaoka
    Tissue Engineering and Regenerative Medicine.2017; 14(5): 507.     CrossRef
  • A versatile nanoplatform for synergistic combination therapy to treat human esophageal cancer
    Xin-shuai Wang, De-jiu Kong, Tzu-yin Lin, Xiao-cen Li, Yoshihiro Izumiya, Xue-zhen Ding, Li Zhang, Xiao-chen Hu, Jun-qiang Yang, She-gan Gao, Kit S Lam, Yuan-pei Li
    Acta Pharmacologica Sinica.2017; 38(6): 931.     CrossRef
  • 17,838 View
  • 641 Download
  • 75 Web of Science
  • 71 Crossref
Close layer

Cancer Res Treat : Cancer Research and Treatment
Close layer
TOP