Skip Navigation
Skip to contents

Cancer Res Treat : Cancer Research and Treatment

OPEN ACCESS

Search

Page Path
HOME > Search
1 "Young Seok Ju"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
General
Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon Lee, Jin Roh, Jun Sung Park, Islam Oguz Tuncay, Wonchul Lee, Jung-Ah Kim, Brian Baek-Lok Oh, Jong-Yeon Shin, Jeong Seok Lee, Young Seok Ju, Ryul Kim, Seongyeol Park, Jaemo Koo, Hansol Park, Joonoh Lim, Erin Connolly-Strong, Tae-Hwan Kim, Yong Won Choi, Mi Sun Ahn, Hyun Woo Lee, Seokhwi Kim, Jang-Hee Kim, Minsuk Kwon
Cancer Res Treat. 2025;57(2):350-361.   Published online September 19, 2024
DOI: https://doi.org/10.4143/crt.2024.114
AbstractAbstract PDFSupplementary MaterialPubReaderePub
Purpose
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
  • 2,057 View
  • 215 Download
Close layer

Cancer Res Treat : Cancer Research and Treatment
Close layer
TOP