Skip Navigation
Skip to contents

Cancer Res Treat : Cancer Research and Treatment

OPEN ACCESS

Search

Page Path
HOME > Search
6 "Sung Chan Park"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Articles
Magnetic Resonance-Based Texture Analysis Differentiating KRAS Mutation Status in Rectal Cancer
Ji Eun Oh, Min Ju Kim, Joohyung Lee, Bo Yun Hur, Bun Kim, Dae Yong Kim, Ji Yeon Baek, Hee Jin Chang, Sung Chan Park, Jae Hwan Oh, Sun Ah Cho, Dae Kyung Sohn
Cancer Res Treat. 2020;52(1):51-59.   Published online May 7, 2019
DOI: https://doi.org/10.4143/crt.2019.050
AbstractAbstract PDFSupplementary MaterialPubReaderePub
Purpose
Mutation of the Kirsten Ras (KRAS) oncogene is present in 30%-40% of colorectal cancers and has prognostic significance in rectal cancer. In this study, we examined the ability of radiomics features extracted from T2-weighted magnetic resonance (MR) images to differentiate between tumors with mutant KRAS and wild-type KRAS.
Materials and Methods
Sixty patients with primary rectal cancer (25 with mutant KRAS, 35 with wild-type KRAS) were retrospectively enrolled. Texture analysis was performed in all regions of interest on MR images, which were manually segmented by two independent radiologists. We identified potentially useful imaging features using the two-tailed t test and used them to build a discriminant model with a decision tree to estimate whether KRAS mutation had occurred.
Results
Three radiomic features were significantly associated with KRASmutational status (p < 0.05). The mean (and standard deviation) skewness with gradient filter value was significantly higher in the mutant KRAS group than in the wild-type group (2.04±0.94 vs. 1.59±0.69). Higher standard deviations for medium texture (SSF3 and SSF4) were able to differentiate mutant KRAS (139.81±44.19 and 267.12±89.75, respectively) and wild-type KRAS (114.55±29.30 and 224.78±62.20). The final decision tree comprised three decision nodes and four terminal nodes, two of which designated KRAS mutation. The sensitivity, specificity, and accuracy of the decision tree was 84%, 80%, and 81.7%, respectively.
Conclusion
Using MR-based texture analysis, we identified three imaging features that could differentiate mutant from wild-type KRAS. T2-weighted images could be used to predict KRAS mutation status preoperatively in patients with rectal cancer.

Citations

Citations to this article as recorded by  
  • A multicenter study: predicting KRAS mutation and prognosis in colorectal cancer through a CT-based radiomics nomogram
    Manman Li, Yiwen Yuan, Hui Zhou, Feng Feng, Guodong Xu
    Abdominal Radiology.2024; 49(6): 1816.     CrossRef
  • SG-Transunet: A segmentation-guided Transformer U-Net model for KRAS gene mutation status identification in colorectal cancer
    Yulan Ma, Yuzhu Guo, Weigang Cui, Jingyu Liu, Yang Li, Yingsen Wang, Yan Qiang
    Computers in Biology and Medicine.2024; 173: 108293.     CrossRef
  • CHNet: A multi-task global–local Collaborative Hybrid Network for KRAS mutation status prediction in colorectal cancer
    Meiling Cai, Lin Zhao, Yan Qiang, Long Wang, Juanjuan Zhao
    Artificial Intelligence in Medicine.2024; 155: 102931.     CrossRef
  • Assessment of prognostic indicators and KRAS mutations in rectal cancer using a fractional-order calculus MR diffusion model: whole tumor histogram analysis
    Mi Zhou, Hongyun Huang, Deying Bao, Meining Chen, Fulin Lu
    Abdominal Radiology.2024;[Epub]     CrossRef
  • The Role of Predictive and Prognostic MRI-Based Biomarkers in the Era of Total Neoadjuvant Treatment in Rectal Cancer
    Sebastian Curcean, Andra Curcean, Daniela Martin, Zsolt Fekete, Alexandru Irimie, Alina-Simona Muntean, Cosmin Caraiani
    Cancers.2024; 16(17): 3111.     CrossRef
  • A segmentation-based sequence residual attention model for KRAS gene mutation status prediction in colorectal cancer
    Lin Zhao, Kai Song, Yulan Ma, Meiling Cai, Yan Qiang, Jingyu Sun, Juanjuan Zhao
    Applied Intelligence.2023; 53(9): 10232.     CrossRef
  • Rectal MRI Interpretation After Neoadjuvant Therapy
    Natally Horvat, Maria El Homsi, Joao Miranda, Yousef Mazaheri, Marc J. Gollub, Viktoriya Paroder
    Journal of Magnetic Resonance Imaging.2023; 57(2): 353.     CrossRef
  • Association between Dynamic Contrast-Enhanced MRI Parameters and Prognostic Factors in Patients with Primary Rectal Cancer
    Hye Ri Kim, Seung Ho Kim, Kyung Han Nam
    Current Oncology.2023; 30(2): 2543.     CrossRef
  • Virtual biopsy in abdominal pathology: where do we stand?
    Arianna Defeudis, Jovana Panic, Giulia Nicoletti, Simone Mazzetti, Valentina Giannini, Daniele Regge
    BJR|Open.2023;[Epub]     CrossRef
  • Repeatability of radiomics studies in colorectal cancer: a systematic review
    Ying Liu, Xiaoqin Wei, Xu Feng, Yan Liu, Guiling Feng, Yong Du
    BMC Gastroenterology.2023;[Epub]     CrossRef
  • The Role of Radiomics in Rectal Cancer
    Joao Miranda, Natally Horvat, Jose A. B. Araujo-Filho, Kamila S. Albuquerque, Charlotte Charbel, Bruno M. C. Trindade, Daniel L. Cardoso, Lucas de Padua Gomes de Farias, Jayasree Chakraborty, Cesar Higa Nomura
    Journal of Gastrointestinal Cancer.2023; 54(4): 1158.     CrossRef
  • Radiomics and Radiogenomics in Pelvic Oncology: Current Applications and Future Directions
    Niall J. O’Sullivan, Michael E. Kelly
    Current Oncology.2023; 30(5): 4936.     CrossRef
  • Construction of prediction model for KRAS mutation status of colorectal cancer based on CT radiomics
    Yuntai Cao, Jing Zhang, Lele Huang, Zhiyong Zhao, Guojin Zhang, Jialiang Ren, Hailong Li, Hongqian Zhang, Bin Guo, Zhan Wang, Yue Xing, Junlin Zhou
    Japanese Journal of Radiology.2023; 41(11): 1236.     CrossRef
  • Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review
    Giuseppe Di Costanzo, Raffaele Ascione, Andrea Ponsiglione, Anna Giacoma Tucci, Serena Dell’Aversana, Francesca Iasiello, Enrico Cavaglià
    Exploration of Targeted Anti-tumor Therapy.2023; : 406.     CrossRef
  • Investigating the Feasibility of Predicting KRAS Status, Tumor Staging, and Extramural Venous Invasion in Colorectal Cancer Using Inter-Platform Magnetic Resonance Imaging Radiomic Features
    Mohammed S. Alshuhri, Abdulaziz Alduhyyim, Haitham Al-Mubarak, Ahmad A. Alhulail, Othman I. Alomair, Yahia Madkhali, Rakan A. Alghuraybi, Abdullah M. Alotaibi, Abdullalh G. M. Alqahtani
    Diagnostics.2023; 13(23): 3541.     CrossRef
  • Radiogenomics: Contemporary Applications in the Management of Rectal Cancer
    Niall J. O’Sullivan, Hugo C. Temperley, Michelle T. Horan, Alison Corr, Brian J. Mehigan, John O. Larkin, Paul H. McCormick, Dara O. Kavanagh, James F. M. Meaney, Michael E. Kelly
    Cancers.2023; 15(24): 5816.     CrossRef
  • KRAS status predicted by pretreatment MRI radiomics was associated with lung metastasis in locally advanced rectal cancer patients
    Yirong Xiang, Shuai Li, Maxiaowei Song, Hongzhi Wang, Ke Hu, Fengwei Wang, Zhi Wang, Zhiyong Niu, Jin Liu, Yong Cai, Yongheng Li, Xianggao Zhu, Jianhao Geng, Yangzi Zhang, Huajing Teng, Weihu Wang
    BMC Medical Imaging.2023;[Epub]     CrossRef
  • Segmentation-based multi-scale attention model for KRAS mutation prediction in rectal cancer
    Kai Song, Zijuan Zhao, Jiawen Wang, Yan Qiang, Juanjuan Zhao, Muhammad Bilal Zia
    International Journal of Machine Learning and Cybernetics.2022; 13(5): 1283.     CrossRef
  • A multitask dual‐stream attention network for the identification of KRAS mutation in colorectal cancer
    Kai Song, Zijuan Zhao, Yulan Ma, JiaWen Wang, Wei Wu, Yan Qiang, Juanjuan Zhao, Suman Chaudhary
    Medical Physics.2022; 49(1): 254.     CrossRef
  • Multi-Omic Approaches in Colorectal Cancer beyond Genomic Data
    Emilia Sardo, Stefania Napolitano, Carminia Maria Della Corte, Davide Ciardiello, Antonio Raucci, Gianluca Arrichiello, Teresa Troiani, Fortunato Ciardiello, Erika Martinelli, Giulia Martini
    Journal of Personalized Medicine.2022; 12(2): 128.     CrossRef
  • The application of radiomics in predicting gene mutations in cancer
    Yana Qi, Tingting Zhao, Mingyong Han
    European Radiology.2022; 32(6): 4014.     CrossRef
  • The prognostic effect of PNN in digestive tract cancers and its correlation with the tumor immune landscape in colon adenocarcinoma
    Hui Zhang, Ming Jin, Meng Ye, Yanping Bei, Shaohui Yang, Kaitai Liu
    Journal of Clinical Laboratory Analysis.2022;[Epub]     CrossRef
  • 18F-FDG-PET/MRI texture analysis in rectal cancer after neoadjuvant chemoradiotherapy
    Giulia Capelli, Cristina Campi, Quoc Riccardo Bao, Francesco Morra, Carmelo Lacognata, Pietro Zucchetta, Diego Cecchin, Salvatore Pucciarelli, Gaya Spolverato, Filippo Crimì
    Nuclear Medicine Communications.2022; 43(7): 815.     CrossRef
  • Radiomics model based on multi-sequence MR images for predicting preoperative immunoscore in rectal cancer
    Kaiming Xue, Lin Liu, Yunxia Liu, Yan Guo, Yuhang Zhu, Mengchao Zhang
    La radiologia medica.2022; 127(7): 702.     CrossRef
  • Heteronemin and Tetrac Induce Anti-Proliferation by Blocking EGFR-Mediated Signaling in Colorectal Cancer Cells
    Sukanya Unson, Tung-Cheng Chang, Yung-Ning Yang, Shwu-Huey Wang, Chi-Hung Huang, Dana R. Crawford, Haw-Ming Huang, Zi-Lin Li, Hung-Yun Lin, Jacqueline Whang-Peng, Kuan Wang, Paul J. Davis, Wen-Shan Li
    Marine Drugs.2022; 20(8): 482.     CrossRef
  • Association between Texture Analysis Parameters and Molecular Biologic KRAS Mutation in Non-Mucinous Rectal Cancer
    Sung Jae Jo, Seung Ho Kim, Sang Joon Park, Yedaun Lee, Jung Hee Son
    Journal of the Korean Society of Radiology.2021; 82(2): 406.     CrossRef
  • Actualización de la recomendación para la determinación de biomarcadores en el carcinoma colorrectal. Consenso Nacional de la Sociedad Española de Oncología Médica y de la Sociedad Española de Anatomía Patológica
    Samuel Navarro, Miriam Cuatrecasas, Javier Hernández-Losa, Stefania Landolfi, Eva Musulén, Santiago Ramón y Cajal, Rocío García-Carbonero, Jesús García-Foncillas, Pedro Pérez-Segura, Ramón Salazar, Ruth Vera, Pilar García-Alfonso
    Revista Española de Patología.2021; 54(1): 41.     CrossRef
  • Texture analysis using T1-weighted images for muscles in Charcot-Marie-Tooth disease patients and volunteers
    Ji Hyun Lee, Young Cheol Yoon, Hyun Su Kim, Jae-Hun Kim, Byung-Ok Choi
    European Radiology.2021; 31(5): 3508.     CrossRef
  • Radiomics signature of brain metastasis: prediction of EGFR mutation status
    Guangyu Wang, Bomin Wang, Zhou Wang, Wenchao Li, Jianjun Xiu, Zhi Liu, Mingyong Han
    European Radiology.2021; 31(7): 4538.     CrossRef
  • Radiomics and Magnetic Resonance Imaging of Rectal Cancer: From Engineering to Clinical Practice
    Francesca Coppola, Valentina Giannini, Michela Gabelloni, Jovana Panic, Arianna Defeudis, Silvia Lo Monaco, Arrigo Cattabriga, Maria Adriana Cocozza, Luigi Vincenzo Pastore, Michela Polici, Damiano Caruso, Andrea Laghi, Daniele Regge, Emanuele Neri, Rita
    Diagnostics.2021; 11(5): 756.     CrossRef
  • MRI Radiomics Signature as a Potential Biomarker for Predicting KRAS Status in Locally Advanced Rectal Cancer Patients
    ZhiYuan Zhang, LiJun Shen, Yan Wang, Jiazhou Wang, Hui Zhang, Fan Xia, JueFeng Wan, Zhen Zhang
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • Differentiating TP53 Mutation Status in Pancreatic Ductal Adenocarcinoma Using Multiparametric MRI-Derived Radiomics
    Jing Gao, Xiahan Chen, Xudong Li, Fei Miao, Weihuan Fang, Biao Li, Xiaohua Qian, Xiaozhu Lin
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • Radiomic signature of the FOWARC trial predicts pathological response to neoadjuvant treatment in rectal cancer
    Zhuokai Zhuang, Zongchao Liu, Juan Li, Xiaolin Wang, Peiyi Xie, Fei Xiong, Jiancong Hu, Xiaochun Meng, Meijin Huang, Yanhong Deng, Ping Lan, Huichuan Yu, Yanxin Luo
    Journal of Translational Medicine.2021;[Epub]     CrossRef
  • Systematic Review on the Association of Radiomics with Tumor Biological Endpoints
    Agustina La Greca Saint-Esteven, Diem Vuong, Fabienne Tschanz, Janita E. van Timmeren, Riccardo Dal Bello, Verena Waller, Martin Pruschy, Matthias Guckenberger, Stephanie Tanadini-Lang
    Cancers.2021; 13(12): 3015.     CrossRef
  • Emerging applications of radiomics in rectal cancer: State of the art and future perspectives
    Min Hou, Ji-Hong Sun
    World Journal of Gastroenterology.2021; 27(25): 3802.     CrossRef
  • Spatial-Frequency dual-branch attention model for determining KRAS mutation status in colorectal cancer with T2-weighted MRI
    Yulan Ma, Jiawen Wang, Kai Song, Yan Qiang, Xiong Jiao, Juanjuan Zhao
    Computer Methods and Programs in Biomedicine.2021; 209: 106311.     CrossRef
  • Textural differences based on apparent diffusion coefficient maps for discriminating pT3 subclasses of rectal adenocarcinoma
    Zhi-Hua Lu, Kai-Jian Xia, Heng Jiang, Jian-Long Jiang, Mei Wu
    World Journal of Clinical Cases.2021; 9(24): 6987.     CrossRef
  • 2. Radiomics of MRI
    Koji Sakai
    Japanese Journal of Radiological Technology.2021; 77(8): 866.     CrossRef
  • Radiomics and machine learning applications in rectal cancer: Current update and future perspectives
    Arnaldo Stanzione, Francesco Verde, Valeria Romeo, Francesca Boccadifuoco, Pier Paolo Mainenti, Simone Maurea
    World Journal of Gastroenterology.2021; 27(32): 5306.     CrossRef
  • Role of MRI‑based radiomics in locally advanced rectal cancer (Review)
    Siyu Zhang, Mingrong Yu, Dan Chen, Peidong Li, Bin Tang, Jie Li
    Oncology Reports.2021;[Epub]     CrossRef
  • Development and validation of a MRI-based radiomics signature for prediction of KRAS mutation in rectal cancer
    Yanfen Cui, Huanhuan Liu, Jialiang Ren, Xiaosong Du, Lei Xin, Dandan Li, Xiaotang Yang, Dengbin Wang
    European Radiology.2020; 30(4): 1948.     CrossRef
  • Multi-branch cross attention model for prediction of KRAS mutation in rectal cancer with t2-weighted MRI
    JiaWen Wang, YanFen Cui, GuoHua Shi, JuanJuan Zhao, XiaoTang Yang, Yan Qiang, QianQian Du, Yue Ma, Ntikurako Guy-Fernand Kazihise
    Applied Intelligence.2020; 50(8): 2352.     CrossRef
  • Development and validation of a radiomics model based on T2WI images for preoperative prediction of microsatellite instability status in rectal cancer
    Zixing Huang, Wei Zhang, Du He, Xing Cui, Song Tian, Hongkun Yin, Bin Song
    Medicine.2020; 99(10): e19428.     CrossRef
  • PET/MRI Radiomics in Rectal Cancer: a Pilot Study on the Correlation Between PET- and MRI-Derived Image Features with a Clinical Interpretation
    Barbara Juarez Amorim, Angel Torrado-Carvajal, Shadi A Esfahani, Sara S Marcos, Mark Vangel, Dan Stein, David Groshar, Onofrio A Catalano
    Molecular Imaging and Biology.2020; 22(5): 1438.     CrossRef
  • MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC)
    Filippo Crimì, Giulia Capelli, Gaya Spolverato, Quoc Riccardo Bao, Anna Florio, Sebastiano Milite Rossi, Diego Cecchin, Laura Albertoni, Cristina Campi, Salvatore Pucciarelli, Roberto Stramare
    La radiologia medica.2020; 125(12): 1216.     CrossRef
  • Update of the recommendations for the determination of biomarkers in colorectal carcinoma: National Consensus of the Spanish Society of Medical Oncology and the Spanish Society of Pathology
    P. García-Alfonso, R. García-Carbonero, J. García-Foncillas, P. Pérez-Segura, R. Salazar, R. Vera, S. Ramón y Cajal, J. Hernández-Losa, S. Landolfi, E. Musulén, M. Cuatrecasas, S. Navarro
    Clinical and Translational Oncology.2020; 22(11): 1976.     CrossRef
  • MRI-Based Texture Features as Potential Prognostic Biomarkers in Anaplastic Astrocytoma Patients Undergoing Surgical Treatment
    Yang Zhang, Chaoyue Chen, Yangfan Cheng, Danni Cheng, Fumin Zhao, Jianguo Xu
    Contrast Media & Molecular Imaging.2020; 2020: 1.     CrossRef
  • Preoperative prediction of perineural invasion and KRAS mutation in colon cancer using machine learning
    Yu Li, Aydin Eresen, Junjie Shangguan, Jia Yang, Al B. Benson, Vahid Yaghmai, Zhuoli Zhang
    Journal of Cancer Research and Clinical Oncology.2020; 146(12): 3165.     CrossRef
  • Diffusion-Weighted MRI and Diffusion Kurtosis Imaging to Detect RAS Mutation in Colorectal Liver Metastasis
    Vincenza Granata, Roberta Fusco, Chiara Risi, Alessandro Ottaiano, Antonio Avallone, Alfonso De Stefano, Robert Grimm, Roberta Grassi, Luca Brunese, Francesco Izzo, Antonella Petrillo
    Cancers.2020; 12(9): 2420.     CrossRef
  • CT Radiomics in Colorectal Cancer: Detection of KRAS Mutation Using Texture Analysis and Machine Learning
    Víctor González-Castro, Eva Cernadas, Emilio Huelga, Manuel Fernández-Delgado, Jacobo Porto, José Ramón Antunez, Miguel Souto-Bayarri
    Applied Sciences.2020; 10(18): 6214.     CrossRef
  • Cancer Genotypes Prediction and Associations Analysis From Imaging Phenotypes: A Survey on Radiogenomics
    Yao Wang, Yan Wang, Chunjie Guo, Xuping Xie, Sen Liang, Ruochi Zhang, Wei Pang, Lan Huang
    Biomarkers in Medicine.2020; 14(12): 1151.     CrossRef
  • Diagnostic performance of multiparametric MRI parameters for Gleason score and cellularity metrics of prostate cancer in different zones: a quantitative comparison
    J. Gao, Q. Zhang, C. Zhang, M. Chen, D. Li, Y. Fu, X. Lv, B. Zhang, H. Guo
    Clinical Radiology.2019; 74(11): 895.e17.     CrossRef
  • Ability of Radiomics in Differentiation of Anaplastic Oligodendroglioma From Atypical Low-Grade Oligodendroglioma Using Machine-Learning Approach
    Yang Zhang, Chaoyue Chen, Yangfan Cheng, Yuen Teng, Wen Guo, Hui Xu, Xuejin Ou, Jian Wang, Hui Li, Xuelei Ma, Jianguo Xu
    Frontiers in Oncology.2019;[Epub]     CrossRef
  • The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study
    Chaoyue Chen, Xinyi Guo, Jian Wang, Wen Guo, Xuelei Ma, Jianguo Xu
    Frontiers in Oncology.2019;[Epub]     CrossRef
  • 11,624 View
  • 403 Download
  • 55 Web of Science
  • 54 Crossref
Close layer
Nomogram Development and External Validation for Predicting the Risk of Lymph Node Metastasis in T1 Colorectal Cancer
Jung Ryul Oh, Boram Park, Seongdae Lee, Kyung Su Han, Eui-Gon Youk, Doo-Han Lee, Do-Sun Kim, Doo-Seok Lee, Chang Won Hong, Byung Chang Kim, Bun Kim, Min Jung Kim, Sung Chan Park, Dae Kyung Sohn, Hee Jin Chang, Jae Hwan Oh
Cancer Res Treat. 2019;51(4):1275-1284.   Published online January 17, 2019
DOI: https://doi.org/10.4143/crt.2018.569
AbstractAbstract PDFSupplementary MaterialPubReaderePub
Purpose
Predicting lymph node metastasis (LNM) risk is crucial in determining further treatment strategies following endoscopic resection of T1 colorectal cancer (CRC). This study aimed to establish a new prediction model for the risk of LNM in T1 CRC patients.
Materials and Methods
The development set included 833 patients with T1 CRC who had undergone endoscopic (n=154) or surgical (n=679) resection at the National Cancer Center. The validation set included 722 T1 CRC patients who had undergone endoscopic (n=249) or surgical (n=473) resection at Daehang Hospital. A logistic regression model was used to construct the prediction model. To assess the performance of prediction model, discrimination was evaluated using the receiver operating characteristic (ROC) curves with area under the ROC curve (AUC), and calibration was assessed using the Hosmer-Lemeshow (HL) goodness-of-fit test.
Results
Five independent risk factors were determined in the multivariable model, including vascular invasion, high-grade histology, submucosal invasion, budding, and background adenoma. In final prediction model, the performance of the model was good that the AUC was 0.812 (95% confidence interval [CI], 0.770 to 0.855) and the HL chi-squared test statistic was 1.266 (p=0.737). In external validation, the performance was still good that the AUC was 0.771 (95% CI, 0.708 to 0.834) and the p-value of the HL chi-squared test was 0.040. We constructed the nomogram with the final prediction model.
Conclusion
We presented an externally validated new prediction model for LNM risk in T1 CRC patients, guiding decision making in determining whether additional surgery is required after endoscopic resection of T1 CRC.

Citations

Citations to this article as recorded by  
  • Risk stratification scores for lymph node metastases in T1 colorectal cancer—A systematic review
    Rakesh Quinn, Giuleta Jamsari, Ewan MacDermid
    Colorectal Disease.2025;[Epub]     CrossRef
  • The critical role of tumor size in predicting lymph node metastasis in early-stage colorectal cancer
    Attila Ulkucu, Metincan Erkaya, Ekin Inal, Emre Gorgun
    The American Journal of Surgery.2025; 241: 116152.     CrossRef
  • Risk assessment in pT1 colorectal cancer
    Emma Jane Norton, Adrian C Bateman
    Journal of Clinical Pathology.2024; 77(4): 225.     CrossRef
  • Curative criteria for endoscopic treatment of colorectal cancer
    Lucille Quénéhervé, Mathieu Pioche, Jérémie Jacques
    Best Practice & Research Clinical Gastroenterology.2024; 68: 101883.     CrossRef
  • Commentary: An artificial intelligence prediction model outperforms conventional guidelines in predicting lymph node metastasis of T1 colorectal cancer
    Katsuro Ichimasa, Shin-ei Kudo, Khay Guan Yeoh
    Frontiers in Oncology.2024;[Epub]     CrossRef
  • Management after non-curative endoscopic resection of T1 rectal cancer
    Hao Dang, Daan A. Verhoeven, Jurjen J. Boonstra, Monique E. van Leerdam
    Best Practice & Research Clinical Gastroenterology.2024; 68: 101895.     CrossRef
  • A clinical-radiomics nomogram based on spectral CT multi-parameter images for preoperative prediction of lymph node metastasis in colorectal cancer
    Qian Li, Rui Hong, Ping Zhang, Liting Hou, Hailun Bao, Lin Bai, Jian Zhao
    Clinical & Experimental Metastasis.2024; 41(5): 639.     CrossRef
  • A new clinical model for predicting lymph node metastasis in T1 colorectal cancer
    Kai Wang, Hui He, Yanyun Lin, Yanhong Zhang, Junguo Chen, Jiancong Hu, Xiaosheng He
    International Journal of Colorectal Disease.2024;[Epub]     CrossRef
  • Predictors of early colorectal cancer metastasis to lymph nodes: providing rationale for therapy decisions
    Xu Song, Jun Li, Jiang Zhu, Yun-Fei Kong, Yu-Hang Zhou, Zi-Kun Wang, Jin Zhang
    Frontiers in Oncology.2024;[Epub]     CrossRef
  • Approaches and considerations in the endoscopic treatment of T1 colorectal cancer
    Yunho Jung
    The Korean Journal of Internal Medicine.2024; 39(4): 563.     CrossRef
  • A Nomogram for Predicting Unplanned Intraoperative Hypothermia in Patients With Colorectal Cancer Undergoing Laparoscopic Colorectal Procedures
    Lupei Yan, Jingxing Tan, Hao Chen, Han Xiao, Yi Zhang, Qin Yao, Yuerong Li
    AORN Journal.2023;[Epub]     CrossRef
  • A proposal for grading the risk of lymph node metastasis after endoscopic resection of T1 colorectal cancer
    Zhenghua Piao, Rong Ge, Chunnian Wang
    International Journal of Colorectal Disease.2023;[Epub]     CrossRef
  • Nomogram as a novel predictive tool for lymph node metastasis in T1 colorectal cancer treated with endoscopic resection: a nationwide, multicenter study
    Yoshiki Kajiwara, Shiro Oka, Shinji Tanaka, Takahiro Nakamura, Shoichi Saito, Yosuke Fukunaga, Manabu Takamatsu, Hiroshi Kawachi, Kinichi Hotta, Hiroaki Ikematsu, Motohiro Kojima, Yutaka Saito, Masayoshi Yamada, Yukihide Kanemitsu, Shigeki Sekine, Shinji
    Gastrointestinal Endoscopy.2023; 97(6): 1119.     CrossRef
  • CT morphological features for predicting the risk of lymph node metastasis in T1 colorectal cancer
    Suyun Li, Zhenhui Li, Li Wang, Mimi Wu, Xiaobo Chen, Chutong He, Yao Xu, Mengyi Dong, Yanting Liang, Xin Chen, Zaiyi Liu
    European Radiology.2023; 33(10): 6861.     CrossRef
  • Prediction model for lymph node metastasis in superficial colorectal cancer: a better choice than computed tomography
    Chao-Tao Tang, Jun Li, Peng Wang, You-Xiang Chen, Chun-Yan Zeng
    Surgical Endoscopy.2023; 37(10): 7444.     CrossRef
  • Lymph Node Molecular Analysis with OSNA Enables the Identification of pT1 CRC Patients at Risk of Recurrence: A Multicentre Study
    Karmele Saez de Gordoa, Maria Teresa Rodrigo-Calvo, Ivan Archilla, Sandra Lopez-Prades, Alba Diaz, Jordi Tarragona, Isidro Machado, Juan Ruiz Martín, Diana Zaffalon, Maria Daca-Alvarez, Maria Pellisé, Jordi Camps, Miriam Cuatrecasas
    Cancers.2023; 15(22): 5481.     CrossRef
  • Prediction of disease recurrence or residual disease after primary endoscopic resection of pT1 colorectal cancer—results from a large nationwide Danish study
    Ilze Ose, Katarina Levic, Lau Caspar Thygesen, Orhan Bulut, Thue Bisgaard, Ismail Gögenur, Tine Plato Kuhlmann
    International Journal of Colorectal Disease.2023;[Epub]     CrossRef
  • Endoscopic resection alone as a potential treatment method for low-risk deep invasive T1 colorectal cancer
    Yuta Kouyama, Shin-ei Kudo, Katsuro Ichimasa, Shingo Matsudaira, Yushi Ogawa, Kenichi Mochizuki, Yuki Takashina, Yuta Sato, Tatsuya Sakurai, Yasuharu Maeda, Hiroki Nakamura, Masashi Misawa, Yuichi Mori, Toyoki Kudo, Takemasa Hayashi, Kunihiko Wakamura, Te
    iGIE.2023; 2(4): 503.     CrossRef
  • A Retrospective Multicenter Study of Risk Factors, Stratification, and Prognosis of Lymph Node Metastasis in T1 and T2 Colorectal Cancer
    Eui Myung Kim, Il Tae Son, Byung Chun Kim, Jun Ho Park, Byung Mo Kang, Jong Wan Kim
    Journal of Clinical Medicine.2023; 12(24): 7744.     CrossRef
  • Risk and Time Pattern of Recurrences After Local Endoscopic Resection of T1 Colorectal Cancer: A Meta-analysis
    Hao Dang, Nik Dekkers, Saskia le Cessie, Jeanin E. van Hooft, Monique E. van Leerdam, Philip P. Oldenburg, Louis Flothuis, Jan W. Schoones, Alexandra M.J. Langers, James C.H. Hardwick, Jolein van der Kraan, Jurjen J. Boonstra
    Clinical Gastroenterology and Hepatology.2022; 20(2): e298.     CrossRef
  • Lymphatic Node Metastasis Risk Scoring System: A Novel Instrument for Predicting Lymph Node Metastasis After Thymic Epithelial Tumor Resection
    Xinxin Cheng, Yaxin Lu, Sai Chen, Weilin Yang, Bo Xu, Jianyong Zou, Zhenguang Chen
    Annals of Surgical Oncology.2022; 29(1): 598.     CrossRef
  • Current problems and perspectives of pathological risk factors for lymph node metastasis in T1 colorectal cancer: Systematic review
    Katsuro Ichimasa, Shin‐ei Kudo, Hideyuki Miyachi, Yuta Kouyama, Kenichi Mochizuki, Yuki Takashina, Yasuharu Maeda, Yuichi Mori, Toyoki Kudo, Yuki Miyata, Yoshika Akimoto, Yuki Kataoka, Takafumi Kubota, Tetsuo Nemoto, Fumio Ishida, Masashi Misawa
    Digestive Endoscopy.2022; 34(5): 901.     CrossRef
  • Tumor Location as a Prognostic Factor in T1 Colorectal Cancer
    Katsuro Ichimasa, Shin-ei Kudo, Yuta Kouyama, Kenichi Mochizuki, Yuki Takashina, Masashi Misawa, Yuichi Mori, Takemasa Hayashi, Kunihiko Wakamura, Hideyuki Miyachi
    Journal of the Anus, Rectum and Colon.2022; 6(1): 9.     CrossRef
  • Identification of Predictive Factors for Lymph Node Metastasis in pT1 Stage Colorectal Cancer Patients: A Retrospective Analysis Based on the Population Database
    Jiawei Song, Huanhuan Yin, Yong Zhu, Shengqi Fei
    Pathology and Oncology Research.2022;[Epub]     CrossRef
  • Establishment of a Dynamic Nomogram for Predicting the Risk of Lymph Node Metastasis in T1 Stage Colorectal Cancer
    Zitao Liu, Chao Huang, Huakai Tian, Yu Liu, Yongshan Huang, Zhengming Zhu
    Frontiers in Surgery.2022;[Epub]     CrossRef
  • Deep Submucosal Invasion Is Not an Independent Risk Factor for Lymph Node Metastasis in T1 Colorectal Cancer: A Meta-Analysis
    Liselotte W. Zwager, Barbara A.J. Bastiaansen, Nahid S.M. Montazeri, Roel Hompes, Valeria Barresi, Katsuro Ichimasa, Hiroshi Kawachi, Isidro Machado, Tadahiko Masaki, Weiqi Sheng, Shinji Tanaka, Kazutomo Togashi, Chihiro Yasue, Paul Fockens, Leon M.G. Moo
    Gastroenterology.2022; 163(1): 174.     CrossRef
  • Composite scoring system and optimal tumor budding cut-off number for estimating lymph node metastasis in submucosal colorectal cancer
    Jeong-ki Kim, Ye-Young Rhee, Jeong Mo Bae, Jung Ho Kim, Seong-Joon Koh, Hyun Jung Lee, Jong Pil Im, Min Jung Kim, Seung-Bum Ryoo, Seung-Yong Jeong, Kyu Joo Park, Ji Won Park, Gyeong Hoon Kang
    BMC Cancer.2022;[Epub]     CrossRef
  • Lymph node metastasis in T1 colorectal cancer with the only high-risk histology of submucosal invasion depth ≥ 1000 μm
    Yusuke Yamaoka, Akio Shiomi, Hiroyasu Kagawa, Hitoshi Hino, Shoichi Manabe, Kai Chen, Kenji Nanishi, Akifumi Notsu
    International Journal of Colorectal Disease.2022; 37(11): 2387.     CrossRef
  • Subpopulation analysis of survival in high-risk T1 colorectal cancer: surgery versus endoscopic resection only
    Ryun Kyong Ha, Boram Park, Kyung Su Han, Dae Kyung Sohn, Chang Won Hong, Byung Chang Kim, Bun Kim, Sung Chan Park, Hee Jin Chang, Jae Hwan Oh
    Gastrointestinal Endoscopy.2022; 96(6): 1036.     CrossRef
  • Preoperative prediction of lymph node status in patients with colorectal cancer. Developing a predictive model using machine learning
    Morten Hartwig, Karoline Bendix Bräuner, Rasmus Vogelsang, Ismail Gögenur
    International Journal of Colorectal Disease.2022; 37(12): 2517.     CrossRef
  • Preoperative Predictors of Lymph Node Metastasis in Colon Cancer
    Yansong Xu, Yi Chen, Chenyan Long, Huage Zhong, Fangfang Liang, Ling-xu Huang, Chuanyi Wei, Shaolong Lu, Weizhong Tang
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • LASSO-Based Machine Learning Algorithm for Prediction of Lymph Node Metastasis in T1 Colorectal Cancer
    Jeonghyun Kang, Yoon Jung Choi, Im-kyung Kim, Hye Sun Lee, Hogeun Kim, Seung Hyuk Baik, Nam Kyu Kim, Kang Young Lee
    Cancer Research and Treatment.2021; 53(3): 773.     CrossRef
  • Risk Stratification of T1 Colorectal Cancer Metastasis to Lymph Nodes: Current Status and Perspective
    Katsuro Ichimasa, Shin-ei Kudo, Hideyuki Miyachi, Yuta Kouyama, Masashi Misawa, Yuichi Mori
    Gut and Liver.2021; 15(6): 818.     CrossRef
  • Supervised Learning Based Systemic Inflammatory Markers Enable Accurate Additional Surgery for pT1NxM0 Colorectal Cancer: A Comparative Analysis of Two Practical Prediction Models for Lymph Node Metastasis
    Jinlian Jin, Haiyan Zhou, Shulin Sun, Zhe Tian, Haibing Ren, Jinwu Feng
    Cancer Management and Research.2021; Volume 13: 8967.     CrossRef
  • Risk factors and predictors of lymph nodes metastasis and distant metastasis in newly diagnosed T1 colorectal cancer
    Kaibo Guo, Yuqian Feng, Li Yuan, Harpreet S. Wasan, Leitao Sun, Minhe Shen, Shanming Ruan
    Cancer Medicine.2020; 9(14): 5095.     CrossRef
  • Development and external validation of a predictive scoring system associated with metastasis of T1‐2 colorectal tumors to lymph nodes
    Shaobo Mo, Zheng Zhou, Weixing Dai, Wenqiang Xiang, Lingyu Han, Long Zhang, Renjie Wang, Sanjun Cai, Qingguo Li, Guoxiang Cai
    Clinical and Translational Medicine.2020; 10(1): 275.     CrossRef
  • Inverse Association of Age with Risk of Lymph Node Metastasis in Superficial Colorectal Cancer: A Large Population-Based Study
    Qing-Wei Zhang, Long-Ci Sun, Chao-Tao Tang, Qian Liang, Yang-Yang Zhou, Hui-Min Chen, Yun-Jie Gao, Zhi-Zheng Ge
    The Oncologist.2020; 25(6): e920.     CrossRef
  • T1 colorectal cancers: The impact of screening programs on a curable disease
    Adriana Vaz Safatle-Ribeiro
    Digestive and Liver Disease.2020; 52(8): 918.     CrossRef
  • Risk factors and risk prediction models for colorectal cancer metastasis and recurrence: an umbrella review of systematic reviews and meta-analyses of observational studies
    Wei Xu, Yazhou He, Yuming Wang, Xue Li, Jane Young, John P. A. Ioannidis, Malcolm G. Dunlop, Evropi Theodoratou
    BMC Medicine.2020;[Epub]     CrossRef
  • 10,203 View
  • 381 Download
  • 41 Web of Science
  • 39 Crossref
Close layer
Redefining the Positive Circumferential Resection Margin by Incorporating Preoperative Chemoradiotherapy Treatment Response in Locally Advanced Rectal Cancer: A Multicenter Validation Study
Joo Ho Lee, Eui Kyu Chie, Seung-Yong Jeong, Tae-You Kim, Dae Yong Kim, Tae Hyun Kim, Sun Young Kim, Ji Yeon Baek, Hee Jin Chang, Min Ju Kim, Sung Chan Park, Jae Hwan Oh, Sung Hwan Kim, Jong Hoon Lee, Doo Ho Choi, Hee Chul Park, Sung-Bum Kang, Jae-Sung Kim
Cancer Res Treat. 2018;50(2):506-517.   Published online May 24, 2017
DOI: https://doi.org/10.4143/crt.2016.607
AbstractAbstract PDFPubReaderePub
Purpose
This study was conducted to validate the prognostic influence of treatment response among patients with positive circumferential resection margin for locally advanced rectal cancer.
Materials and Methods
Clinical data of 197 patientswith positive circumferentialresection margin defined as ≤ 2 mm after preoperative chemoradiotherapy followed by total mesorectal excision between 2004 and 2009were collected forthis multicenter validation study. All patients underwent median 50.4Gy radiationwith concurrentfluoropyrimidine based chemotherapy. Treatmentresponse was dichotomized to good response, including treatmentresponse of grade 2 or 3, and poor response, including grade 0 or 1.
Results
After 52 months median follow-up, 5-year overall survival (OS) for good responders and poor responders was 79.1% and 48.4%, respectively (p < 0.001). In multivariate analysis, circumferential resection margin involvement and treatment response were a prognosticator for OS and locoregional recurrence-free survival. In subgroup analysis, good responders with close margin showed significantly better survival outcomes for survival. Good responders with involved margin and poor responders with close margin shared similar results, whereas poorresponderswith involved margin hadworst survival (5-year OS, 81.2%, 57.0%, 50.0%, and 32.4%, respectively; p < 0.001).
Conclusion
Among patients with positive circumferential resection margin after preoperative chemoradiotherapy, survival of the good responders was significantly better than poor responders. Subgroup analysis revealed that definition of positive circumferential resection margin may be individualized as involvement for good responders, whereas ≤ 2 mm for poor responders.

Citations

Citations to this article as recorded by  
  • Tailored Strategy for Locally Advanced Rectal Carcinoma (GRECCAR 4): Long-term Results From a Multicenter, Randomized, Open-Label, Phase II Trial
    Philippe Rouanet, Eric Rullier, Bernard Lelong, Philippe Maingon, Jean-Jacques Tuech, Denis Pezet, Florence Castan, Stephanie Nougaret
    Diseases of the Colon & Rectum.2022; 65(8): 986.     CrossRef
  • Colorectal Cancer Surgery Quality in Manitoba: A Population-Based Descriptive Analysis
    Iresha Ratnayake, Jason Park, Natalie Biswanger, Allison Feely, Grace Musto, Kathleen Decker
    Current Oncology.2021; 28(3): 2239.     CrossRef
  • 11,109 View
  • 266 Download
  • 4 Web of Science
  • 2 Crossref
Close layer
What Is the Ideal Tumor Regression Grading System in Rectal Cancer Patients after Preoperative Chemoradiotherapy?
Soo Hee Kim, Hee Jin Chang, Dae Yong Kim, Ji Won Park, Ji Yeon Baek, Sun Young Kim, Sung Chan Park, Jae Hwan Oh, Ami Yu, Byung-Ho Nam
Cancer Res Treat. 2016;48(3):998-1009.   Published online October 22, 2015
DOI: https://doi.org/10.4143/crt.2015.254
AbstractAbstract PDFPubReaderePub
Purpose
Tumor regression grade (TRG) is predictive of therapeutic response in rectal cancer patients after chemoradiotherapy (CRT) followed by curative resection. However, various TRG systems have been suggested, with subjective categorization, resulting in interobserver variability. This study compared the prognostic validity of four different TRG systems in order to identify the most ideal TRG system. Materials and Methods This study included 933 patients who underwent preoperative CRT and curative resection. Primary tumors alone were graded according to the American Joint Committee on Cancer (AJCC), Dworak, and Ryan TRG systems, and both primary tumors and regional lymph nodes were graded according to a modified Dworak TRG system. The ability of each TRG system to predict recurrence-free survival (RFS) and overall survival (OS) was analyzed using chisquare and C statistics.
Results
All four TRG systems were significantly predictive of both RFS and OS (p < 0.001 each), however none was a better predictor of prognosis than ypStage. Among the four TRGs, the mDworak TRG system was a better predictor of RFS and OS than the AJCC, Dworak, and Ryan TRG systems, and both the chi-square and C statistics were higher for the former, although the differences were not statistically significant. The combination of ypStage and the modified Dworak TRG better predicted RFS and OS than ypStage alone. Conclusion The modified Dworak TRG system for evaluation of entire tumors including regional lymph nodes is a better predictor of survival than current TRG systems for evaluation of the primary tumor alone.

Citations

Citations to this article as recorded by  
  • Neoadjuvant chemotherapy in locally advanced colon cancer: A systematic review with proportional meta-analysis
    K. van den Berg, I.E.G. van Hellemond, J.M.W.E. Willems, J.W.A. Burger, H.J.T. Rutten, G.J. Creemers
    European Journal of Surgical Oncology.2025; 51(3): 109560.     CrossRef
  • Prognostic Value of Tumor Regression Grade Combined with Pathological Lymph Node Status in Initially Node-Positive Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy
    Dakui Luo, Yajie Chen, Zhouyu Luo, Huangbo Gong, Qingguo Li, Xinxiang Li
    Journal of Investigative Surgery.2025;[Epub]     CrossRef
  • Interpretation of Complete Tumor Response on MRI Following Chemoradiotherapy of Rectal Cancer: Inter-Reader Agreement and Associated Factors in Multi-Center Clinical Practice
    Hae Young Kim, Seung Hyun Cho, Jong Keon Jang, Bohyun Kim, Chul-min Lee, Joon Seok Lim, Sung Kyoung Moon, Soon Nam Oh, Nieun Seo, Seong Ho Park
    Korean Journal of Radiology.2024; 25(4): 351.     CrossRef
  • Evaluating complete response prediction rates in locally advanced rectal cancer with different radiomics segmentation approaches
    Gizem Kaval, Merve Gulbiz Dagoglu Kartal, Sena Azamat, Eda Cingoz, Gokhan Ertas, Sule Karaman, Basak Kurtuldu, Metin Keskin, Neslihan Berker, Senem Karabulut, Ethem Nezih Oral, Nergiz Dagoglu Sakin
    Pathology and Oncology Research.2024;[Epub]     CrossRef
  • Regressionsgrading gastrointestinaler Tumoren
    Doreen Maria Gisder, Andrea Tannapfel, Iris Tischoff
    Die Gastroenterologie.2024; 19(3): 234.     CrossRef
  • Rectal Cancer Survival for Residual Carcinoma In Situ Vs. Pathologic Complete Response After Neoadjuvant Therapy
    Nathan M. Kohrman, Jordan R. Wlodarczyk, Li Ding, Nicholas P. McAndrew, Sandra D. Algaze, Kyle G. Cologne, Sang W. Lee, Sarah E Koller
    Diseases of the Colon & Rectum.2024;[Epub]     CrossRef
  • Predictive value of flexible proctosigmoidoscopy and laboratory findings for complete clinical responses after neoadjuvant chemoradiotherapy in patients with locally advanced primary rectal cancer: a retrospective cohort study
    Alireza Hadizadeh, Hamed Kazemi-Khaledi, Mohammad-Sadegh Fazeli, Seyed-Mohsen Ahmadi-Tafti, Amir Keshvari, Reza Akbari-Asbagh, Mohammad-Reza Keramati, Alireza Kazemeini, Amir-Reza Fazeli, Behnam Behboudi, Mohammadamin Parsaei
    International Journal of Colorectal Disease.2024;[Epub]     CrossRef
  • Are the tumor microenvironment characteristics of pretreatment biopsy specimens of colorectal cancer really effectively predict the efficacy of neoadjuvant therapy: A retrospective multicenter study
    Bingbing Li, Longjiao Chen, Yichun Huang, Meng Wu, Weilan Fang, Xin Zou, Yihong Zheng, Qiuxiang Xiao
    Medicine.2024; 103(35): e39429.     CrossRef
  • Outcomes of rectal cancer treatment in rural Australia and New Zealand: analysis of the bowel cancer outcomes registry
    Ishmam Murshed, Tessa L. Dinger, Duveke P. E. de Gaay Fortman, Luke Traeger, Sergei Bedrikovetski, Andrew Hunter, Hidde M. Kroon, Tarik Sammour
    ANZ Journal of Surgery.2024; 94(10): 1823.     CrossRef
  • Relationship Between Neoadjuvant Chemoradiotherapy Response and Mesorectum Volume in Rectum Cancer
    Ramazan Saygın Kerimoğlu, Ebru Esen, Mustafa Saraçoğlu, İbrahim Babalıoğlu, Bekir Turgut, İlknur Küçükosmanoğlu, Osman Doğru
    Acta Haematologica Oncologica Turcica.2024; : 44.     CrossRef
  • Molecular Mechanism of Radioresponsiveness in Colorectal Cancer: A Systematic Review
    Matthew Lau, Md Islam Khan, Helen Law
    Genes.2024; 15(10): 1257.     CrossRef
  • Tumor Immune Microenvironment Biomarkers for Recurrence Prediction in Locally Advanced Rectal Cancer Patients after Neoadjuvant Chemoradiotherapy
    Jun-Eul Hwang, Sung-Sun Kim, Hyun-Jin Bang, Hyeon-Jong Kim, Hyun-Jeong Shim, Woo-Kyun Bae, Ik-Joo Chung, Eun-Gene Sun, Taebum Lee, Chan-Young Ock, Jeong-Seok Nam, Sang-Hee Cho
    Cancers.2024; 16(19): 3353.     CrossRef
  • A Novel Engineered AAV-Based Neoantigen Vaccine in Combination with Radiotherapy Eradicates Tumors
    Kevin Chih-Yang Huang, Chia-Ying Lai, Wei-Ze Hung, Hsin-Yu Chang, Pei-Chun Lin, Shu-Fen Chiang, Tao-Wei Ke, Ji-An Liang, An-Cheng Shiau, Pei-Chen Yang, William Tzu-Liang Chen, K.S. Clifford Chao
    Cancer Immunology Research.2023; 11(1): 123.     CrossRef
  • Does Pathological Complete Response after Neoadjuvant Therapy Influence Postoperative Morbidity in Rectal Cancer after Transanal Total Mesorectal Excision?
    Martin Svoboda, Vladimír Procházka, Tomáš Grolich, Tomáš Pavlík, Monika Mazalová, Zdeněk Kala
    Journal of Gastrointestinal Cancer.2023; 54(2): 528.     CrossRef
  • MRI‐Based Artificial Intelligence in Rectal Cancer
    Chinting Wong, Yu Fu, Mingyang Li, Shengnan Mu, Xiaotong Chu, Jiahui Fu, Chenghe Lin, Huimao Zhang
    Journal of Magnetic Resonance Imaging.2023; 57(1): 45.     CrossRef
  • Pilot proteomic study of locally advanced rectal cancer before and after neoadjuvant chemoradiotherapy indicates high metabolic activity in non‐responders' tumor tissue
    Tamara Babic, Vasiliki Lygirou, Jovana Rosic, Marko Miladinov, Aleksandra Djikic Rom, Eirini Baira, Rafael Stroggilos, Eftychia Pappa, Jerome Zoidakis, Zoran Krivokapic, Aleksandra Nikolic
    PROTEOMICS – Clinical Applications.2023;[Epub]     CrossRef
  • Comparison of the diagnostic performance of changes in signal intensity and volume from multiparametric MRI for assessing response of rectal cancer to neoadjuvant chemoradiotherapy
    Zhengwu Tan, Lan Cheng, Lingling Xie, Lan Zhang, Zhenyu Lin, Ping Han, Xin Li
    Asia-Pacific Journal of Clinical Oncology.2023; 19(3): 327.     CrossRef
  • Carbonic Anhydrase IX Expression and Treatment Response Measured in Rectal Adenocarcinoma Following Neoadjuvant Chemo-Radiotherapy
    Emese Sarolta Bádon, Lívia Beke, Attila Mokánszki, Csilla András, Gábor Méhes
    International Journal of Molecular Sciences.2023; 24(3): 2581.     CrossRef
  • Benefits of Adjuvant Chemotherapy for Clinical T3-4N0 Rectal Cancer After Preoperative Chemoradiotherapy
    Hyun Jin Bang, Hyun Jeong Shim, Jun Eul Hwang, Woo Kyun Bae, Ik Joo Chung, Sang Hee Cho
    Chonnam Medical Journal.2023; 59(1): 76.     CrossRef
  • The prognostic role of tumor budding and tumor-stroma ratio in pulmonary metastasis of colorectal carcinoma
    Topias Karjula, Niko Kemi, Anne Niskakangas, Olli Mustonen, Iiris Puro, Vesa-Matti Pohjanen, Teijo Kuopio, Hanna Elomaa, Maarit Ahtiainen, Jukka-Pekka Mecklin, Toni T. Seppälä, Erkki-Ville Wirta, Eero Sihvo, Juha P. Väyrynen, Fredrik Yannopoulos, Olli Hel
    European Journal of Surgical Oncology.2023; 49(7): 1298.     CrossRef
  • An investigation into tumor regression grade as a parameter for locally advanced rectal cancer and 5-year overall survival rate
    Supparerk Laohawiriyakamol, Wongsakorn Chaochankit, Worawit Wanichsuwan, Kanet Kanjanapradit, Teeranan Laohawiriyakamol
    Annals of Coloproctology.2023; 39(1): 59.     CrossRef
  • Deep learning of endoscopic features for the assessment of neoadjuvant therapy response in locally advanced rectal cancer
    Anqi Wang, Jieli Zhou, Gang Wang, Beibei Zhang, Hongyi Xin, Haiyang Zhou
    Asian Journal of Surgery.2023; 46(9): 3568.     CrossRef
  • Neoadjuvant chemoradiotherapy versus neoadjuvant chemotherapy alone for patients with locally advanced rectal cancer: a propensity-score-matched analysis combined with SEER validation
    Jingjing Wu, Mingzhe Huang, Yuanhui Wu, Yisong Hong, Linbin Cai, Rongzhao He, Yanxin Luo, Puning Wang, Meijin Huang, Jinxin Lin
    Journal of Cancer Research and Clinical Oncology.2023; 149(11): 8897.     CrossRef
  • A multi-class classification algorithm based on hematoxylin-eosin staining for neoadjuvant therapy in rectal cancer: a retrospective study
    Yihan Wu, Xiaohua Liu, Fang Liu, Yi Li, Xiaomin Xiong, Hao Sun, Bo Lin, Yu Li, Bo Xu
    PeerJ.2023; 11: e15408.     CrossRef
  • Early Age of Onset Is an Independent Predictor for a Worse Response to Neoadjuvant Therapies in Sporadic Rectal Cancer Patients
    Caterina Foppa, Annalisa Maroli, Antonio Luberto, Carlotta La Raja, Paola Spaggiari, Cristiana Bonifacio, Stefano De Zanet, Marco Montorsi, Salvatore Piscuoglio, Luigi Maria Terracciano, Armando Santoro, Antonino Spinelli
    Cancers.2023; 15(14): 3750.     CrossRef
  • Metformin increases pathological responses to rectal cancers with neoadjuvant chemoradiotherapy: a systematic review and meta-analysis
    I-Li Lai, Jeng-Fu You, Wen-Sy Tsai, Yu-Jen Hsu, Yih-Jong Chern, Ming-Ying Wu
    World Journal of Surgical Oncology.2023;[Epub]     CrossRef
  • Risk factors for lateral pelvic lymph node metastasis in patients with lower rectal cancer: a systematic review and meta-analysis
    De-xing Zeng, Zhou Yang, Ling Tan, Meng-ni Ran, Zi-lin Liu, Jiang-wei Xiao
    Frontiers in Oncology.2023;[Epub]     CrossRef
  • Clinical predictors of rectal cancer response after neo-adjuvant (Chemo)Radiotherapy in Australia and New Zealand: Analysis of the Bi-National Colorectal Cancer Audit (BCCA)
    Jianliang Liu, Justin Y.T. Lee, Sergei Bedrikovetski, Luke Traeger, James W. Moore, Joanne L. Perry, Hidde M. Kroon, Tarik Sammour
    European Journal of Surgical Oncology.2023; 49(11): 107070.     CrossRef
  • Pancreatic ductal adenocarcinoma complete regression after preoperative chemotherapy: Surgical results in a small series
    Domenico Pinelli, Andrea Micalef, Barbara Merelli, Rosangela Trezzi, Annalisa Amaduzzi, Stefano Agnesi, Michela Guizzetti, Stefania Camagni, Veronica Fedele, Michele Colledan
    Cancer Treatment and Research Communications.2023; 37: 100770.     CrossRef
  • The ypT may better predict the efficacy of neoadjuvant chemoradiotherapy than tumor regression grade in locally advanced rectal cancer patients diagnosed ypT1-4N0
    Yujun Cui, Xinzhi Liu, Shuai Li, Hongzhi Wang, Yirong Xiang, Yangzi Zhang, Maxiaowei Song, Jianhao Geng, Zhiyan Liu, Huajing Teng, Xianggao Zhu, Yong Cai, Yongheng Li, Weihu Wang
    Clinical and Translational Oncology.2023; 26(4): 1012.     CrossRef
  • Grading der Tumorregression gastrointestinaler Karzinome nach neoadjuvanter Therapie
    Drolaiz Liu, Rupert Langer
    Der Pathologe.2022; 43(1): 51.     CrossRef
  • Deeper sections reveal residual tumor cells in rectal cancer specimens diagnosed with pathological complete response following neoadjuvant treatment
    Lasse Slumstrup, Susanne Eiholm, Astrid Louise Bjørn Bennedsen, Dea Natalie Munch Jepsen, Ismail Gögenur, Anne-Marie Kanstrup Fiehn
    Virchows Archiv.2022; 480(5): 1041.     CrossRef
  • MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy
    Jaeseung Shin, Nieun Seo, Song-Ee Baek, Nak-Hoon Son, Joon Seok Lim, Nam Kyu Kim, Woong Sub Koom, Sungwon Kim
    Radiology.2022; 303(2): 351.     CrossRef
  • Antitumor Effect and Induced Immune Response Following Exposure of Hexaminolevulinate and Blue Light in Combination with Checkpoint Inhibitor in an Orthotopic Model of Rat Bladder Cancer
    Laureline Lamy, Jacques Thomas, Agnès Leroux, Jean-François Bisson, Kari Myren, Aslak Godal, Gry Stensrud, Lina Bezdetnaya
    Biomedicines.2022; 10(3): 548.     CrossRef
  • High Neutrophil-Lymphocyte Ratio, Platelet-Lymphocyte Ratio and Low Lymphocyte Levels Are Correlated With Worse Pathological Complete Response Rates
    Serdar Karakaya, İbrahim Karadağ, Mehmet Emin Yılmaz, Ömür Berna Çakmak Öksüzoğlu
    Cureus.2022;[Epub]     CrossRef
  • Development of a method for digital assessment of tumor regression grade in patients with rectal cancer following neoadjuvant therapy
    Dea Natalie Munch Jepsen, Henrik Høeg, Jeppe Thagaard, Julie Sparholt Walbech, Ismail Gögenur, Anne-Marie Kanstrup Fiehn
    Journal of Pathology Informatics.2022; 13: 100152.     CrossRef
  • The reduction of 18F-FDG uptake ability of tumor tissue after neoadjuvant chemoradiotherapy in locally advanced rectal cancer can effectively reflect the degree of tumor regression
    Fengpeng Wu, Xiaoxiao Zhang, Congrong Yang, Kanghua Wang, Linlin Xiao, Chaoxi Zhou, Xinming Zhao, Guiying Wang
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Reduced field-of-view versus full field-of-view diffusion-weighted imaging for the evaluation of complete response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer
    Siwon Jang, Jeong Min Lee, Jeong Hee Yoon, Jae Seok Bae
    Abdominal Radiology.2021; 46(4): 1468.     CrossRef
  • Impact of KRAS status on tumor response and survival after neoadjuvant treatment of locally advanced rectal cancer
    Peige Zhou, Paolo Goffredo, Timothy Ginader, Dakota Thompson, Jennifer Hrabe, Irena Gribovskaja‐Rupp, Muneera Kapadia, Imran Hassan
    Journal of Surgical Oncology.2021; 123(1): 278.     CrossRef
  • Clinical predictors of response to chemoradiotherapy for rectal cancer as an aid to organ preservation
    Jesse Fischer, Tim W. Eglinton, Frank A. Frizelle
    ANZ Journal of Surgery.2021; 91(6): 1190.     CrossRef
  • Can the mesorectal fat tissue volume be used as a predictive factor in foreseeing the response to neoadjuvant chemoradiotherapy in rectum cancer? A CT-based preliminary study
    Okan Dilek, Huseyin Akkaya, Cenk Parlatan, Tolga Koseci, Zeynel Abidin Tas, Gökhan Soker, Bozkurt Gulek
    Abdominal Radiology.2021; 46(6): 2415.     CrossRef
  • Pathological response post neoadjuvant therapy for locally advanced rectal cancer is an independent predictor of survival
    Jason On, Joanna Shim, Craig Mackay, Graeme Murray, Leslie Samuel, Craig Parnaby, George Ramsay
    Colorectal Disease.2021; 23(6): 1326.     CrossRef
  • Complete pathological response in rectal cancer utilising novel treatment strategies for neo-adjuvant therapy: A systematic review
    K. Wilson, M. Flood, V. Narasimhan, T. Pham, S. Warrier, R. Ramsay, M. Michael, A. Heriot
    European Journal of Surgical Oncology.2021; 47(8): 1862.     CrossRef
  • Contemporary snapshot of tumor regression grade (TRG) distribution in locally advanced rectal cancer: a cross sectional multicentric experience
    Paola Germani, Francesca Di Candido, Daniel Léonard, Dajana Cuicchi, Ugo Elmore, Marco Ettore Allaix, Vittoria Pia Barbieri, Laura D’Allens, Seraina Faes, Marika Milani, Damiano Caputo, Carmen Martinez, Jan Grosek, Valerio Caracino, Niki Christou, Sapho X
    Updates in Surgery.2021; 73(5): 1795.     CrossRef
  • The value of the tumour-stroma ratio for predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer: a case control study
    Yanting Liang, Yaxi Zhu, Huan Lin, Shenyan Zhang, Suyun Li, Yanqi Huang, Chen Liu, Jinrong Qu, Changhong Liang, Ke Zhao, Zhenhui Li, Zaiyi Liu
    BMC Cancer.2021;[Epub]     CrossRef
  • Can histologic features predict neoadjuvant therapy response in rectal adenocarcinoma?
    Yuho Ono, Justin M.M. Cates, Raul S. Gonzalez
    Pathology - Research and Practice.2021; 226: 153608.     CrossRef
  • A 41-Gene Pair Signature for Predicting the Pathological Response of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiation
    Zhengfa Xue, Shuxin Yang, Yun Luo, Hao Cai, Ming He, Youping Ding, Lei Lei, Wei Peng, Guini Hong, You Guo
    Frontiers in Medicine.2021;[Epub]     CrossRef
  • Validation of Gene Expression-Based Predictive Biomarkers for Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer
    Tomoyuki Momma, Hirokazu Okayama, Yasuyuki Kanke, Satoshi Fukai, Hisashi Onozawa, Shotaro Fujita, Wataru Sakamoto, Motonobu Saito, Shinji Ohki, Koji Kono
    Cancers.2021; 13(18): 4642.     CrossRef
  • Varying practices in tumor regression grading of gastrointestinal carcinomas after neoadjuvant therapy: results of an international survey
    Maria Westerhoff, Marek Osecky, Rupert Langer
    Modern Pathology.2020; 33(4): 676.     CrossRef
  • Importance of the neoadjuvant rectal (NAR) score to the outcome of neoadjuvant chemotherapy alone for locally advanced rectal cancer
    Toshiki Mukai, Keisuke Uehara, Toshisada Aiba, Atsushi Ogura, Toyonori Tsuzuki, Aya Tanaka, Masanori Sando, Noriyuki Ohara, Yusuke Sato, Norifumi Hattori, Goro Nakayama, Yasuhiro Kodera, Masato Nagino
    Surgery Today.2020; 50(8): 912.     CrossRef
  • The Effect of Lymph Nodes’ Histologic Response on Survival Outcomes in Moroccan Patients with Rectal Cancer
    Ihsane El Otmani, Fatima El Agy, Mohammed El Abkari, Karim Ibn Majdoub Hassani, Khalid Mazaz, El Bachir Benjelloun, Khalid Ait Taleb, Touria Bouhafa, Zineb Benbrahim, Sidi Adil Ibrahimi, Laila Chbani
    International Journal of Surgical Oncology.2020; 2020: 1.     CrossRef
  • Prognostic Value of Tumor Regression Grade Based on Ryan Score in Squamous Cell Carcinoma and Adenocarcinoma of Esophagus
    Flávio Roberto Takeda, Francisco Tustumi, Carlos de Almeida Obregon, Gustavo Gonçalves Yogolare, Yasmin Peres Navarro, Vanderlei Segatelli, Rubens Antonio Aissar Sallum, Ulysses Ribeiro Junior, Ivan Cecconello
    Annals of Surgical Oncology.2020; 27(4): 1241.     CrossRef
  • Standardized Pathology Report for Colorectal Cancer, 2nd Edition
    Baek-hui Kim, Joon Mee Kim, Gyeong Hoon Kang, Hee Jin Chang, Dong Wook Kang, Jung Ho Kim, Jeong Mo Bae, An Na Seo, Ho Sung Park, Yun Kyung Kang, Kyung-Hwa Lee, Mee Yon Cho, In-Gu Do, Hye Seung Lee, Hee Kyung Chang, Do Youn Park, Hyo Jeong Kang, Jin Hee So
    Journal of Pathology and Translational Medicine.2020; 54(1): 1.     CrossRef
  • Genomic variation as a marker of response to neoadjuvant therapy in locally advanced rectal cancer
    Jason K. Douglas, Rose E. Callahan, Zachary A. Hothem, Craig S. Cousineau, Samer Kawak, Bryan J. Thibodeau, Shelli Bergeron, Wei Li, Claire E. Peeples, Harry J. Wasvary
    Molecular & Cellular Oncology.2020; 7(3): 1716618.     CrossRef
  • 53BP1 expression and immunoscore are associated with the efficacy of neoadjuvant chemoradiotherapy for rectal cancer
    Ai Huang, Yong Xiao, Chunfen Peng, Tao Liu, Zhenyu Lin, Qin Yang, Tao Zhang, Jun Liu, Hong Ma
    Strahlentherapie und Onkologie.2020; 196(5): 465.     CrossRef
  • Predictors of pathological response and clinical outcome following chemoradiation for locally advanced rectal cancer — a systematic review
    Erica Amaral, Maria Bernardes, Sara Ribeiro, Beatriz Rosa, Ana Pereira, Sandra F. Martins
    Journal of Coloproctology.2020; 40(03): 278.     CrossRef
  • The effect of radiotherapy on rectal cancer: a histopathological appraisal and prognostic indicators
    Mohammad AlQudah, Emil Salmo, Najib Haboubi
    Radiation Oncology Journal.2020; 38(2): 77.     CrossRef
  • Short-course versus long-course neoadjuvant chemoradiotherapy in patients with rectal cancer: preliminary results of a randomized controlled trial
    Mahdi Aghili, Nastaran Khalili, Neda Khalili, Mohammad Babaei, Farshid Farhan, Peiman Haddad, Samaneh Salarvand, Amir Keshvari, Mohammad Sadegh Fazeli, Negin Mohammadi, Reza Ghalehtaki
    Radiation Oncology Journal.2020; 38(2): 119.     CrossRef
  • Pre-Treatment T2-WI Based Radiomics Features for Prediction of Locally Advanced Rectal Cancer Non-Response to Neoadjuvant Chemoradiotherapy: A Preliminary Study
    Bianca Petresc, Andrei Lebovici, Cosmin Caraiani, Diana Sorina Feier, Florin Graur, Mircea Marian Buruian
    Cancers.2020; 12(7): 1894.     CrossRef
  • Preoperative Fibrinogen-Albumin Ratio Index (FARI) is a Reliable Prognosis and Chemoradiotherapy Sensitivity Predictor in Locally Advanced Rectal Cancer Patients Undergoing Radical Surgery Following Neoadjuvant Chemoradiotherapy


    Siyi Lu, Zhenzhen Liu, Xin Zhou, Bingyan Wang, Fei Li, Yanpeng Ma, Wendong Wang, Junren Ma, Yuxia Wang, Hao Wang, Wei Fu
    Cancer Management and Research.2020; Volume 12: 8555.     CrossRef
  • Staging of Locally Advanced Rectal Cancer Beyond TME
    Deborah S. Keller
    Clinics in Colon and Rectal Surgery.2020; 33(05): 258.     CrossRef
  • Tumor Regression in Lymph Node Metastases of Esophageal Adenocarcinomas after Neoadjuvant Therapy
    Marek Osecky, Dino Kröll, Marcus Feith, Daniel Reim, Bastian Dislich, Karen Becker, Rupert Langer
    Gastrointestinal Disorders.2020; 2(4): 397.     CrossRef
  • Prognostic value of changes in serum carcinoembryonic antigen levels for preoperative chemoradiotherapy response in locally advanced rectal cancer
    Chinock Cheong, Jun Sang Shin, Kwang Wook Suh
    World Journal of Gastroenterology.2020; 26(44): 7022.     CrossRef
  • MicroRNA Profiling in Oesophageal Adenocarcinoma Cell Lines and Patient Serum Samples Reveals a Role for miR-451a in Radiation Resistance
    Frederike Butz, Ann-Kathrin Eichelmann, George C. Mayne, Tingting Wang, Isabell Bastian, Karen Chiam, Shashikanth Marri, Pamela J. Sykes, Bas P. Wijnhoven, Eelke Toxopeus, Michael Z. Michael, Christos S. Karapetis, Richard Hummel, David I. Watson, Damian
    International Journal of Molecular Sciences.2020; 21(23): 8898.     CrossRef
  • Targeting Histone Chaperone FACT Complex Overcomes 5-Fluorouracil Resistance in Colon Cancer
    Heyu Song, Jiping Zeng, Shrabasti Roychoudhury, Pranjal Biswas, Bhopal Mohapatra, Sutapa Ray, Kayvon Dowlatshahi, Jing Wang, Vimla Band, Geoffrey Talmon, Kishor K. Bhakat
    Molecular Cancer Therapeutics.2020; 19(1): 258.     CrossRef
  • Tumor regression grade as a clinically useful outcome predictor in patients with rectal cancer after preoperative chemoradiotherapy
    Jung Wook Huh, Hee Cheol Kim, Seok Hyung Kim, Yoon Ah Park, Yong Beom Cho, Seong Hyeon Yun, Woo Yong Lee, Hee Chul Park, Doo Ho Choi, Joon Oh Park, Young Suk Park, Ho-Kyung Chun
    Surgery.2019; 165(3): 579.     CrossRef
  • Tumour regression after radiotherapy for rectal cancer – Results from the randomised Stockholm III trial
    Johan Erlandsson, Ester Lörinc, Madelene Ahlberg, David Pettersson, Torbjörn Holm, Bengt Glimelius, Anna Martling
    Radiotherapy and Oncology.2019; 135: 178.     CrossRef
  • Differences in prognostic relevance of rectal magnetic resonance imaging findings before and after neoadjuvant chemoradiotherapy
    Kwang-Seop Song, Dong Woon Lee, Bun Kim, Bo Yun Hur, Min Jung Kim, Min Ju Kim, Chang Won Hong, Sung Chan Park, Hyoung-Chul Park, Dae Kyung Sohn, Byung Chang Kim, Kyung Su Han, Jae Hwan Oh
    Scientific Reports.2019;[Epub]     CrossRef
  • A prospective feasibility study evaluating the role of multimodality imaging and liquid biopsy for response assessment in locally advanced rectal carcinoma
    Zahra Kassam, Kyle Burgers, Joanna C. Walsh, Ting-Yim Lee, Hon S. Leong, Barbara Fisher
    Abdominal Radiology.2019; 44(11): 3641.     CrossRef
  • Pretreatment Blood Biomarkers Predict Pathologic Responses to Neo-Crt in Patients with Locally Advanced Rectal Cancer
    Aijie Li, Kewen He, Dong Guo, Chao Liu, Duoying Wang, Xiangkui Mu, Jinming Yu
    Future Oncology.2019; 15(28): 3233.     CrossRef
  • Pathological Tumor Regression Grade Classifications in Gastrointestinal Cancers: Role on Patients’ Prognosis
    Giuseppe N. Fanelli, Fotios Loupakis, Elizabeth Smyth, Marco Scarpa, Sara Lonardi, Salvatore Pucciarelli, Giada Munari, Massimo Rugge, Nicola Valeri, Matteo Fassan
    International Journal of Surgical Pathology.2019; 27(8): 816.     CrossRef
  • Translational Potential of MicroRNAs for Preoperative Staging and Prediction of Chemoradiotherapy Response in Rectal Cancer
    Tana Machackova, Vladimir Prochazka, Zdenek Kala, Ondrej Slaby
    Cancers.2019; 11(10): 1545.     CrossRef
  • Association of tumor differentiation and prognosis in patients with rectal cancer undergoing neoadjuvant chemoradiation therapy
    Qunsheng Huang, Huabo Qin, Jian Xiao, Xiaosheng He, Minghao Xie, Xin He, Qiuqiong Yao, Ping Lan, Lei Lian
    Gastroenterology Report.2019; 7(4): 283.     CrossRef
  • Histopathological factors predicting response to neoadjuvant therapy in gastric carcinoma
    M. L. Sánchez de Molina, C. Díaz del Arco, P. Vorwald, D. García-Olmo, L. Estrada, M. J. Fernández-Aceñero
    Clinical and Translational Oncology.2018; 20(2): 253.     CrossRef
  • Tumor regression grading of gastrointestinal cancers after neoadjuvant therapy
    Rupert Langer, Karen Becker
    Virchows Archiv.2018; 472(2): 175.     CrossRef
  • Neoadjuvant radiotherapy combined with capecitabine and sorafenib in patients with advanced KRAS -mutated rectal cancer: A phase I/II trial (SAKK 41/08)
    Roger von Moos, Dieter Koeberle, Sabina Schacher, Stefanie Hayoz, Ralph C. Winterhalder, Arnaud Roth, György Bodoky, Panagiotis Samaras, Martin D. Berger, Daniel Rauch, Piercarlo Saletti, Ludwig Plasswilm, Daniel Zwahlen, Urs R. Meier, Pu Yan, Paola Izzo,
    European Journal of Cancer.2018; 89: 82.     CrossRef
  • A qualitative signature for predicting pathological response to neoadjuvant chemoradiation in locally advanced rectal cancers
    You Guo, Weizhong Jiang, Lu Ao, Kai Song, Huxing Chen, Qingzhou Guan, Qiao Gao, Jun Cheng, Huaping Liu, Xianlong Wang, Guoxian Guan, Zheng Guo
    Radiotherapy and Oncology.2018; 129(1): 149.     CrossRef
  • Prediction of lateral pelvic lymph node metastasis in patients with locally advanced rectal cancer with preoperative chemoradiotherapy: Focus on MR imaging findings
    Min Ju Kim, Bo Yun Hur, Eun Sun Lee, Boram Park, Jungnam Joo, Min Jung Kim, Sung Chan Park, Ji Yeon Baek, Hee Jin Chang, Dae Yong Kim, Jae Hwan Oh, Ju-Seog Lee
    PLOS ONE.2018; 13(4): e0195815.     CrossRef
  • Magnetic resonance tumour regression grade and pathological correlates in patients with rectal cancer
    J K Jang, J L Lee, S H Park, H J Park, I J Park, J H Kim, S H Choi, J Kim, C S Yu, J C Kim
    British Journal of Surgery.2018; 105(12): 1671.     CrossRef
  • Impact of Tumor Regression Grade as a Major Prognostic Factor in Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy: A Proposal for a Modified Staging System
    Changhoon Song, Joo-Hyun Chung, Sung-Bum Kang, Duck-Woo Kim, Heung-Kwon Oh, Hye Seung Lee, Jin Won Kim, Keun-Wook Lee, Jee Hyun Kim, Jae-Sung Kim
    Cancers.2018; 10(9): 319.     CrossRef
  • Prognostic Value of Sterilized Lymph Nodes After Preoperative Chemoradiotherapy for Patients with ypN0 Rectal Cancer
    Karina Vychnevskaia, Frederic Dumont, Julie Agostini, Catherine Julié, Peggy Dartigues, Thierry Lazure, Valérie Boige, Diane Goéré, Antoine Brouquet, Christophe Penna, Frédérique Peschaud, Stéphane Benoist
    Annals of Surgical Oncology.2017; 24(5): 1304.     CrossRef
  • Predictive and Prognostic Molecular Biomarkers for Response to Neoadjuvant Chemoradiation in Rectal Cancer
    Delphine Dayde, Ichidai Tanaka, Rekha Jain, Mei Tai, Ayumu Taguchi
    International Journal of Molecular Sciences.2017; 18(3): 573.     CrossRef
  • Histological grading based on poorly differentiated clusters is predictive of tumour response and clinical outcome in rectal carcinoma treated with neoadjuvant chemoradiotherapy
    Luca Reggiani Bonetti, Simona Lionti, Federica Domati, Giuliana Pagliani, Elisabetta Mattioli, Valeria Barresi
    Histopathology.2017; 71(3): 393.     CrossRef
  • Applicability of American Joint Committee on Cancer and College of American Pathologists Regression Grading System in Rectal Cancer
    Tarkan Jäger, Daniel Neureiter, Romana Urbas, Eckhard Klieser, Wolfgang Hitzl, Klaus Emmanuel, Adam Dinnewitzer
    Diseases of the Colon & Rectum.2017; 60(8): 815.     CrossRef
  • Endoscopic assessment of tumor regression after preoperative chemoradiotherapy as a prognostic marker in locally advanced rectal cancer
    Dae Kyung Sohn, Kyung Su Han, Byung Chang Kim, Chang Won Hong, Hee Jin Chang, Ji Yeon Baek, Min Ju Kim, Sung Chan Park, Jae Hwan Oh, Dae Yong Kim
    Surgical Oncology.2017; 26(4): 453.     CrossRef
  • Do pathological variables have prognostic significance in rectal adenocarcinoma treated with neoadjuvant chemoradiotherapy and surgery?
    Luca Reggiani Bonetti, Simona Lionti, Federica Domati, Valeria Barresi
    World Journal of Gastroenterology.2017; 23(8): 1412.     CrossRef
  • Identification of protein clusters predictive of tumor response in rectal cancer patients receiving neoadjuvant chemo-radiotherapy
    Ombretta Repetto, Valli De Re, Antonino De Paoli, Claudio Belluco, Lara Alessandrini, Vincenzo Canzonieri, Renato Cannizzaro
    Oncotarget.2017; 8(17): 28328.     CrossRef
  • Discriminating cancer-related and cancer-unrelated chemoradiation-response genes for locally advanced rectal cancers
    You Guo, Jun Cheng, Lu Ao, Xiangyu Li, Qingzhou Guan, Juan Zhang, Haidan Yan, Hao Cai, Qiao Gao, Weizhong Jiang, Zheng Guo
    Scientific Reports.2016;[Epub]     CrossRef
  • Analysis of long-term outcomes and application of the tumor regression grading system in the therapeutic assessment of resectable limited-disease small cell lung cancer
    Shuonan Xu, Jianfei Zhu, Yawei Dou, Wei Tian, Yun Dai, Xianghui Luo, Hongtao Wang
    Oncology and Translational Medicine.2016; 2(5): 227.     CrossRef
  • 26,269 View
  • 572 Download
  • 94 Web of Science
  • 89 Crossref
Close layer
Endoscopic Criteria for Evaluating Tumor Stage after Preoperative Chemoradiation Therapy in Locally Advanced Rectal Cancer
Kyung Su Han, Dae Kyung Sohn, Dae Yong Kim, Byung Chang Kim, Chang Won Hong, Hee Jin Chang, Sun Young Kim, Ji Yeon Baek, Sung Chan Park, Min Ju Kim, Jae Hwan Oh
Cancer Res Treat. 2016;48(2):567-573.   Published online September 22, 2015
DOI: https://doi.org/10.4143/crt.2015.195
AbstractAbstract PDFPubReaderePub
Purpose
Local excision may be an another option for selected patients with markedly down-staged rectal cancer after preoperative chemoradiation therapy (CRT), and proper evaluation of post-CRT tumor stage (ypT) is essential prior to local excision of these tumors. This study was designed to determine the correlations between endoscopic findings and ypT of rectal cancer.
Materials and Methods
In this study, 481 patients with locally advanced rectal cancer who underwent preoperative CRT followed by surgical resection between 2004 and 2013 at a single institution were evaluated retrospectively. Pathological good response (p-GR) was defined as ypT ≤ 1, and pathological minimal or no response (p-MR) as ypT ≥ 2. The patients were randomly classified according to two groups, a testing (n=193) and a validation (n=288) group. Endoscopic criteria were determined from endoscopic findings and ypT in the testing group and used in classifying patients in the validation group as achieving or not achieving p-GR.
Results
Based on findings in the testing group, the endoscopic criteria for p-GR included scarring, telangiectasia, and erythema, whereas criteria for p-MR included nodules, ulcers, strictures, and remnant tumors. In the validation group, the kappa statistic was 0.965 (p < 0.001), and the sensitivity, specificity, positive predictive value, and negative predictive value were 0.362, 0.963, 0.654, and 0.885, respectively.
Conclusion
The endoscopic criteria presented are easily applicable for evaluation of ypT after preoperative CRT for rectal cancer. These criteria may be used for selection of patients for local excision of down-staged rectal tumors, because patients with p-MR could be easily ruled out.

Citations

Citations to this article as recorded by  
  • The value of multimodality MR in T staging evaluation after neoadjuvant therapy for rectal cancer
    Bin Liu, Chuan Sun, Xinyu Zhao, Lingyu Liu, Shuang Liu, Haichuan Ma
    Technology and Health Care.2024; 32(2): 615.     CrossRef
  • Feasibility of endoscopic techniques in assessing the radicality of chemoradiotherapy in patients with rectal cancer
    A. A. Salimova, M. V. Makarova, M. Yu. Kurdanova, Yu. P. Kuvshinov, I. A. Karasev, T. S. Davydkina
    Surgery and Oncology.2024; 14(2): 48.     CrossRef
  • Clinical predictors of pathological good response in locally advanced rectal cancer
    Kongfeng Shao, Rong Zheng, Anchuan Li, Xiaobo Li, Benhua Xu
    Radiation Oncology.2021;[Epub]     CrossRef
  • A prospective clinical study assessing the presence of exfoliated cancer cells and rectal washout including tumors in patients who receive neoadjuvant chemoradiotherapy for rectal cancer
    Kazutake Okada, Sotaro Sadahiro, Yutaro Kamei, Lin Fung Chan, Takashi Ogimi, Hiroshi Miyakita, Gota Saito, Akira Tanaka, Toshiyuki Suzuki
    Surgery Today.2020; 50(4): 352.     CrossRef
  • Oncologic Risk of Rectal Preservation Against Medical Advice After Chemoradiotherapy for Rectal Cancer: A Multicenter Comparative Cross‐Sectional Study with Rectal Preservation as Supported by Surgeon
    Kwang‐Seop Song, Sung Chan Park, Dae Kyung Sohn, Jae Hwan Oh, Min Jung Kim, Ji Won Park, Seung‐Bum Ryoo, Seung‐Yong Jeong, Kyu Joo Park, Heung‐Kwon Oh, Duck‐Woo Kim, Sung‐Bum Kang
    World Journal of Surgery.2019; 43(12): 3216.     CrossRef
  • Endoscopic assessment of tumor regression after preoperative chemoradiotherapy as a prognostic marker in locally advanced rectal cancer
    Dae Kyung Sohn, Kyung Su Han, Byung Chang Kim, Chang Won Hong, Hee Jin Chang, Ji Yeon Baek, Min Ju Kim, Sung Chan Park, Jae Hwan Oh, Dae Yong Kim
    Surgical Oncology.2017; 26(4): 453.     CrossRef
  • Advances in organ preserving strategies in rectal cancer patients
    Rutger CH. Stijns, Mike-Stephen R. Tromp, Niek Hugen, Johannes HW de Wilt
    European Journal of Surgical Oncology.2017;[Epub]     CrossRef
  • 12,295 View
  • 124 Download
  • 9 Web of Science
  • 7 Crossref
Close layer
Robotic Versus Laparoscopic Surgery for Rectal Cancer after Preoperative Chemoradiotherapy: Case-Matched Study of Short-Term Outcomes
Yong Sok Kim, Min Jung Kim, Sung Chan Park, Dae Kyung Sohn, Dae Yong Kim, Hee Jin Chang, Byung-Ho Nam, Jae Hwan Oh
Cancer Res Treat. 2016;48(1):225-231.   Published online March 11, 2015
DOI: https://doi.org/10.4143/crt.2014.365
AbstractAbstract PDFPubReaderePub
Purpose
Robotic surgery is expected to have advantages over laparoscopic surgery; however, there are limited data regarding the feasibility of robotic surgery for rectal cancer after preoperative chemoradiotherapy (CRT). Therefore, we evaluated the short-term outcomes of robotic surgery for rectal cancer. Materials and Methods Thirty-three patients with cT3N0-2 rectal cancer after preoperative CRT who underwent robotic low anterior resection (R-LAR) between March 2010 and January 2012 were matched with 66 patients undergoing laparoscopic low anterior resection (L-LAR). Perioperative clinical outcomes and pathological data were compared between the two groups.
Results
Patient characteristics did not differ significantly different between groups. The mean operation time was 441 minutes (R-LAR) versus 277 minutes (L-LAR; p < 0.001). The open conversion rate was 6.1% in the R-LAR group and 0% in the L-LAR group (p=0.11). There were no significant differences in the time to flatus passage, length of hospital stay, and postoperative morbidity. In pathological review, the mean number of harvested lymph nodes was 22.3 in R-LAR and 21.6 in L-LAR (p=0.82). Involvement of circumferential resection margin was positive in 16.1% and 6.7%, respectively (p=0.42). Total mesorectal excision (TME) quality was complete in 97.0% in R-LAR and 91.0% in L-LAR (p=0.41). Conclusion In our study, short-term outcomes of robotic surgery for rectal cancer after CRT were similar to those of laparoscopic surgery in respect to bowel function recovery, morbidity, and TME quality. Well-designed clinical trials are needed to evaluate the functional results and longterm outcomes of robotic surgery for rectal cancer.

Citations

Citations to this article as recorded by  
  • Comparison of efficacy and safety between robotic-assisted versus laparoscopic surgery for locally advanced mid-low rectal cancer following neoadjuvant chemoradiotherapy: a systematic review and meta-analysis
    Xin-Mao Zhu, Xiao Bai, Hai-Qi Wang, Dong-Qiu Dai
    International Journal of Surgery.2025; 111(1): 1154.     CrossRef
  • The role of robotic-assisted surgery in the management of rectal cancer: a systematic review and meta-analysis
    Chenxiong Zhang, Hao Tan, Han Xu, Jiaming Ding
    International Journal of Surgery.2024; 110(10): 6282.     CrossRef
  • Robotic-Assisted versus Laparoscopic Surgery for Rectal Cancer: An Analysis of Clinical and Financial Outcomes from a Tertiary Referral Center
    Jasper Max Gebhardt, Neno Werner, Andrea Stroux, Frank Förster, Ioannis Pozios, Claudia Seifarth, Christian Schineis, Benjamin Weixler, Katharina Beyer, Johannes Christian Lauscher
    Journal of Clinical Medicine.2024; 13(6): 1795.     CrossRef
  • Association of Surgical Approaches and Outcomes in Total Mesorectal Excision and Margin Status for Rectal Cancer
    Muhammad Bilal Mirza, Adriana C. Gamboa, Rebecca Irlmeier, Benjamin Hopkins, Scott E. Regenbogen, Katherine A. Hrebinko, Jennifer Holder-Murray, Jason T. Wiseman, Aslam Ejaz, Paul E. Wise, Fei Ye, Kamran Idrees, Alexander T. Hawkins, Glen C. Balch, Aimal
    Journal of Surgical Research.2024; 300: 494.     CrossRef
  • Rapidez y Precisión en la Comunicación en Tiempo Real entre el Laboratorio Clínico y el Médico durante la Cirugía Robótica
    Alfredo Ibarra-Sánchez, Claudia Soto-Félix, Leticia Cano-Barraza, Delia Barraza-Sámano
    Estudios y Perspectivas Revista Científica y Académica .2024; 4(4): 1463.     CrossRef
  • Surgical outcomes of robotic, laparoscopic, and open low anterior resection after preoperative chemoradiotherapy for patients with advanced lower rectal cancer
    Sukchol Lim, Yuzo Nagai, Hiroaki Nozawa, Kazushige Kawai, Kazuhito Sasaki, Koji Murono, Shigenobu Emoto, Yuichiro Yokoyama, Tsuyoshi Ozawa, Shinya Abe, Hiroyuki Anzai, Hirofumi Sonoda, Soichiro Ishihara
    Surgery Today.2023; 53(1): 109.     CrossRef
  • Operative and oncological outcomes after robotic rectal resection compared with laparoscopy: a systematic review and meta‐analysis
    Julie Flynn, Jose T. Larach, Joseph C. H. Kong, Jessica Rahme, Peadar S. Waters, Satish K. Warrier, Alexander Heriot
    ANZ Journal of Surgery.2023; 93(3): 510.     CrossRef
  • Comparison of Operative Time Between Robotic and Laparoscopic Low Anterior Resection for Rectal Cancer:A Systematic Review and Meta-Analysis
    Zhen Chen, Hua Yu, Huaping Wu, Pingxi Wang, Fanwei Zeng
    Surgical Innovation.2023; 30(3): 390.     CrossRef
  • Robotic Rectal Resection for Rectal Cancer in Elderly Patients: A Systematic Review and Meta-Analysis
    Rossella Reddavid, Silvia Sofia, Lucia Puca, Jacopo Moro, Simona Ceraolo, Rosa Jimenez-Rodriguez, Maurizio Degiuli
    Journal of Clinical Medicine.2023; 12(16): 5331.     CrossRef
  • Short-term and long-term efficacy in robot-assisted treatment for mid and low rectal cancer: a systematic review and meta-analysis
    Huiming Wu, Renkai Guo, Huiyu Li
    International Journal of Colorectal Disease.2023;[Epub]     CrossRef
  • Robotic versus laparoscopic surgery for rectal cancer after neoadjuvant chemoradiotherapy: A propensity-score matching analysis
    Tzu-Chun Chen, Jin-Tung Liang
    Journal of the Formosan Medical Association.2022; 121(8): 1532.     CrossRef
  • Short‐term outcomes of robotic‐assisted surgery following neoadjuvant chemotherapy for lower rectal cancer
    Hajime Morohashi, Yoshiyuki Sakamoto, Takuya Miura, Daichi Ichinohe, Shunsuke Kubota, Keisuke Yamazaki, Aika Ichisawa, Yuto Mitsuhashi, Taiichi Wakiya, Kenichi Hakamada
    Asian Journal of Endoscopic Surgery.2022; 15(3): 577.     CrossRef
  • Robotic versus Laparoscopic Low Anterior Resection for Rectal Cancer
    Aba Khaled M. Farid Uddin
    World Journal of Colorectal Surgery.2022; 11(3): 47.     CrossRef
  • Oncological outcomes of robotic-assisted total mesorectal excision after neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer
    Po-Jung Chen, Wei-Chih Su, Tsung-Kun Chang, Yen-Cheng Chen, Ching-Chun Li, Tzu-Chieh Yin, Hsiang-Lin Tsai, Cheng-Jen Ma, Ching-Wen Huang, Jaw-Yuan Wang
    Asian Journal of Surgery.2021; 44(7): 957.     CrossRef
  • Difference in surgical outcomes of rectal cancer by study design: meta-analyses of randomized clinical trials, case-matched studies, and cohort studies
    N Hoshino, T Sakamoto, K Hida, Y Takahashi, H Okada, K Obama, T Nakayama
    BJS Open.2021;[Epub]     CrossRef
  • Postoperative complications observed with robotic versus laparoscopic surgery for the treatment of rectal cancer
    Chengkui Liu, Xiaoqing Li, Qingfeng Wang
    Medicine.2021; 100(36): e27158.     CrossRef
  • Robotic and robotic-assisted vs laparoscopic rectal cancer surgery: A meta-analysis of short-term and long-term results
    Guojun Tong, Guiyang Zhang, Zhaozheng Zheng
    Asian Journal of Surgery.2021;[Epub]     CrossRef
  • Robotic-Assisted vs. Standard Laparoscopic Surgery for Rectal Cancer Resection: A Systematic Review and Meta-Analysis of 19,731 Patients
    Kamil Safiejko, Radoslaw Tarkowski, Maciej Koselak, Marcin Juchimiuk, Aleksander Tarasik, Michal Pruc, Jacek Smereka, Lukasz Szarpak
    Cancers.2021; 14(1): 180.     CrossRef
  • Robotic versus Laparoscopic Colorectal Surgeries
    Anil Heroor, Aysha Khan, Kashish Jain, Akshay Patil, Hitesh Rajendra Singhavi
    Indian Journal of Colo-Rectal Surgery.2021; 4(1): 12.     CrossRef
  • Feasibility of robot-assisted surgery in elderly patients with rectal cancer
    Wei-Chih Su, Ching-Wen Huang, Cheng-Jen Ma, Po-Jung Chen, Hsiang-Lin Tsai, Tsung-Kun Chang, Yen-Cheng Chen, Ching-Chun Li, Yung-Sung Yeh, Jaw-Yuan Wang
    Journal of Minimal Access Surgery.2021; 17(2): 165.     CrossRef
  • Robotic surgery for colorectal disease: review of current port placement and future perspectives
    Jong Lyul Lee, Hassan A. Alsaleem, Jin Cheon Kim
    Annals of Surgical Treatment and Research.2020; 98(1): 31.     CrossRef
  • Comparison of clinical efficacy between robotic-laparoscopic excision and traditional laparoscopy for rectal cancer
    Zhen Chen, Zhuo Li Zhu, Pingxi Wang, Fanwei Zeng
    Medicine.2020; 99(27): e20704.     CrossRef
  • Oncological Outcomes of Robotic-Assisted Surgery With High Dissection and Selective Ligation Technique for Sigmoid Colon and Rectal Cancer
    Tzu-Chieh Yin, Wei-Chih Su, Po-Jung Chen, Tsung-Kun Chang, Yen-Cheng Chen, Ching-Chun Li, Yi-Chien Hsieh, Hsiang-Lin Tsai, Ching-Wen Huang, Jaw-Yuan Wang
    Frontiers in Oncology.2020;[Epub]     CrossRef
  • Robotic Total Mesorectal Excision for Rectal Cancer: Current Evidences and Future Perspectives
    Je-Ho Jang, Chang-Nam Kim
    Annals of Coloproctology.2020; 36(5): 293.     CrossRef
  • Systematic review analysis of robotic and transanal approaches in TME surgery- A systematic review of the current literature in regard to challenges in rectal cancer surgery
    Julia K. Grass, Daniel R. Perez, Jakob R. Izbicki, Matthias Reeh
    European Journal of Surgical Oncology.2019; 45(4): 498.     CrossRef
  • Robotic Versus Conventional Laparoscopic Surgery for Colorectal Cancer: A Systematic Review and Meta‐Analysis with Trial Sequential Analysis
    Ka Ting Ng, Azlan Kok Vui Tsia, Vanessa Yu Ling Chong
    World Journal of Surgery.2019; 43(4): 1146.     CrossRef
  • Robotic versus conventional laparoscopic surgery for rectal cancer: systematic review and meta-analysis
    Xi-Yu Sun, Lai Xu, Jun-Yang Lu, Guan-Nan Zhang
    Minimally Invasive Therapy & Allied Technologies.2019; 28(3): 135.     CrossRef
  • Systemic review and network meta‐analysis comparing minimal surgical techniques for rectal cancer: quality of total mesorectum excision, pathological, surgical, and oncological outcomes
    Emanuele Rausa, Federica Bianco, Michael E. Kelly, Alberto Aiolfi, Fausto Petrelli, Gianluca Bonitta, Giovanni Sgroi
    Journal of Surgical Oncology.2019; 119(7): 987.     CrossRef
  • TME for rectal cancer: consecutive 70 patients treated with laparoscopic and robotic technique—cumulative experience in a single centre
    J. L. Mégevand, E. Lillo, M. Amboldi, L. Lenisa, A. Ambrosi, A. Rusconi
    Updates in Surgery.2019; 71(2): 331.     CrossRef
  • Completeness of total mesorectum excision of laparoscopic versus robotic surgery: a review with a meta-analysis
    Marco Milone, Michele Manigrasso, Nunzio Velotti, Stefania Torino, Antonietta Vozza, Giovanni Sarnelli, Giovanni Aprea, Francesco Maione, Nicola Gennarelli, Mario Musella, Giovanni Domenico De Palma
    International Journal of Colorectal Disease.2019; 34(6): 983.     CrossRef
  • Immediate results of robotic-assisted operations in colorectal surgery
    Yu. M. Stojko, A. V. Maksimenkov, A. L. Levchuk, D. A. Kolozyan
    Endoskopicheskaya khirurgiya.2019; 25(2): 5.     CrossRef
  • Short-Term Outcomes of Robotic versus Laparoscopic Total Mesorectal Excision for Rectal Cancer: A Cohort Study
    Wen-Han Liu, Pei-Jing Yan, Dong-Ping Hu, Peng-Hui Jin, Yao-Chun Lv, Rong Liu, Xiong-Fei Yang, Ke-Hu Yang, Tian-Kang Guo
    The American Surgeon™.2019; 85(3): 294.     CrossRef
  • Operative time and length of stay is similar between robotic assisted and laparoscopic colon and rectal resections
    Heather R. Nolan, Betsy E. Smith, Michael D. Honaker
    Journal of Robotic Surgery.2018; 12(4): 659.     CrossRef
  • Does robotic rectal cancer surgery improve the results of experienced laparoscopic surgeons? An observational single institution study comparing 168 robotic assisted with 184 laparoscopic rectal resections
    Rogier M. P. H. Crolla, Paul G. Mulder, George P. van der Schelling
    Surgical Endoscopy.2018; 32(11): 4562.     CrossRef
  • Robotic total meso-rectal excision for rectal cancer: A systematic review following the publication of the ROLARR trial
    Katie Jones, Mohamed G Qassem, Parv Sains, Mirza K Baig, Muhammad S Sajid
    World Journal of Gastrointestinal Oncology.2018; 10(11): 449.     CrossRef
  • Recent surgical advances in colorectal cancer excision: toward optimal outcomes
    Cihangir Akyol, Mehmet Ayhan Kuzu
    Colorectal Cancer.2017; 5(4): 147.     CrossRef
  • The safety and effectiveness of robot-assisted versus laparoscopic TME in patients with rectal cancer
    Xiaofei Li, Tao Wang, Liang Yao, Lidong Hu, Penghui Jin, Tiankang Guo, Kehu Yang
    Medicine.2017; 96(29): e7585.     CrossRef
  • Robotic-assisted total mesorectal excision with the single-docking technique for patients with rectal cancer
    Ching-Wen Huang, Hsiang-Lin Tsai, Yung-Sung Yeh, Wei-Chih Su, Ming-Yii Huang, Chun-Ming Huang, Yu-Tang Chang, Jaw-Yuan Wang
    BMC Surgery.2017;[Epub]     CrossRef
  • Robotic Surgery for Rectal Cancer: An Update in 2015
    Jung Myun Kwak, Seon Hahn Kim
    Cancer Research and Treatment.2016; 48(2): 427.     CrossRef
  • La chirurgie robotique dans le cancer du rectum
    J. Coget, P. E. Colombo, A. Mourregot, D. Traoré, P. Rouanet
    Oncologie.2016; 18(5): 305.     CrossRef
  • Robot-assisted versus laparoscopic-assisted surgery for colorectal cancer: a meta-analysis
    Xuan Zhang, ZhengQiang Wei, MengJun Bie, XuDong Peng, Cheng Chen
    Surgical Endoscopy.2016; 30(12): 5601.     CrossRef
  • Robotics in Colorectal Surgery
    Allison Weaver, Scott Steele
    F1000Research.2016; 5: 2373.     CrossRef
  • 13,037 View
  • 134 Download
  • 41 Web of Science
  • 42 Crossref
Close layer

Cancer Res Treat : Cancer Research and Treatment
Close layer
TOP