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Radiotherapy (RT) is a fundamental modality in treatment of cervical cancer. With advancement of technology, conventional RT used 
for external beam radiotherapy (EBRT) for over half a century has been rapidly replaced with intensity-modulated radiation therapy 
(IMRT) especially during the last decade. This newer technique is able to differentiate the intensity of radiation within the same field, 
thus reduces the inevitable exposure of radiation to normal organs and enables better dose delivery to tumors. Recently, the Ameri-
can Society for Radiation Oncology has released a guideline for RT in cervical cancer. Although a section of the guideline recommends 
IMRT for the purpose of toxicity reduction, a thorough review of the literature is necessary to understand the current status of IMRT in 
cervical cancer. This narrative review updates the recent high-level evidences regarding the efficacy and toxicity of IMRT and provides 
a better understanding of the most innovative techniques currently available for EBRT enabled by IMRT.
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Introduction

Uterine cervical cancer is globally the second most com-
mon malignancy with the third highest cancer mortal-
ity among women worldwide [1]. Radiotherapy (RT) is an  
essential component of cervical cancer treatment. For loco-
regionally advanced disease without distant metastasis,  
definitive external beam radiotherapy (EBRT) with concur-
rent platinum-based chemotherapy followed by brachy-
therapy is the standard of care. In early disease, pelvic RT 
is considered in an adjuvant setting for patients with higher 
risk of relapse such as large tumor size, significant depth of 
invasion, lymphovascular, parametrial, nodal and/or resec-
tion margin involvement in surgical pathology [2].

The first implementation of RT for cervical cancer dates 
back to the dawn of 20th century, when Margaret Cleaves 
used intracavitary brachytherapy to treat locally advanced 
cervical squamous cell carcinoma in 1903 [3]. EBRT to the 
whole pelvis for loco-regional control became available in 
the mid-20th century, when high energy linear accelerators 
in the current form have been developed [4]. Pelvic radiation 
treatments in the early days were given by the 2-dimension-
al (2D) technique, using bony landmarks on X-ray films to  
determine the radiation fields. With the advent of com-
puted tomography (CT), EBRT began to be delivered using 

the 3-dimension al (3D) technique (Fig. 1). Simulation CT is  
obtained to delineate the targets and organs at risk (OARs) 
on each slice of axial image. RT is planned by calculating 
dose on the 3D reconstructed targets for optimal delivery of 
radiation and sparing of OARs from unnecessary exposure. 
Registration of simulation CT with the portal image acquired 
by the treatment machine before initiation of RT allows high-
er accuracy compared to the conventional 2D technique. The 
3D-conformal radiotherapy (CRT) has been established as 
the standard of EBRT by the end of 20th century [5].

Although the 3D-technique enables multi-directional  
delivery of beams and therefore improves the conformation 
of radiation with target volumes, the intensity of radiation 
within the same field is still uniform. In 1982, the intensity 
modulated radiation therapy (IMRT) was first developed by 
Brahme, a Swedish medical physicist [6]. IMRT can deliver 
different intensities of radiation within the same field by 
modulating the shape of aperture through which radiation 
beamlets are projected. This technique further enhances the 
beam conformality and has widened the therapeutic win-
dow of RT by achieving greater dose to target volumes while 
reducing the exposure of OARs [7].

The potentials of IMRT has been initially demonstrated 
in the dosimetric studies reporting superior target coverage 
and better sparing of normal organs. Numerous retrospec-
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tive comparisons of IMRT with conventional techniques  
accumulated evidence for initiation of several prospective 
trials. This modern technique has ignited further cutting-
edge innovations to maximize treatment efficacy. The dose 
escalation optimized by IMRT dosimetry launched the dose 
escalation studies on nodal as well as primary diseases. 
IMRT also enables the delivery of higher dose per fraction, 
which gave rise to the hypofractionation IMRT trials. A more 
recent technique is the adaptive RT, which reduces the irradi-
ated volume in line with the tumor volume shrinkage during 
the course of radiation treatment. Because IMRT allows the 
delivery of highly conformal beam with high enough dose 
to achieve durable local control, positron emission tomog-
raphy (PET)–adoptive IMRT has also become more actively 
used in the oligometastatic setting. Attributable to the above  
opportunities opened by IMRT, adoption of IMRT for cervi-
cal cancer has globally expanded in the recent years [8]. Nat-
urally, the question of whether IMRT should become a new 
standard or whether it remains to be just an option emerges. 
This review is aimed to investigate the effects of IMRT on 
tumor control and toxicity profiles in the literature. In addi-
tion to the prospective trials comparing IMRT with conven-
tional RT (2D or 3D RT), newer techniques using IMRT are 
reviewed. The potential benefits, unsolved issues, and future 
directions for IMRT are also discussed. This review provides 
a summary of the role of IMRT in treatment of uterine cervi-
cal cancer based on the most recent evidences.

Initiative Studies

1. Dosimetric studies
With growing prevalence of IMRT, numerous studies 

sought to demonstrate the theoretical advantages of IMRT 
over conventional RT particularly in regards with dosimetry, 
which focuses on calculating the absorbed dose and optimiz-
ing the dose delivery in RT planning. One of the early reports 
demonstrates significantly lesser volume of small intestine, 
rectum, and bladder irradiated in cervical cancer patients 
undergoing pelvic and para-aortic nodal irradiation of 45 Gy 
[9]. IMRT demonstrates satisfactory coverage of the target 
volume over 98% of the prescribed dose while significantly 
reducing gastrointestinal (GI) toxicity up to 30% compared 
to conventional whole pelvic RT [7]. The results are similar 
even when the prescription dose is intensified up to 60 Gy 
for bulky lymph node (LN) [10]. Significantly lower dose to 
the rectum, small intestine, and bladder translates to not only 
significant reduction of acute proctitis, enteritis, and cystitis, 
but also myelosuppression and dermatitis. Chronic GI and 
genitourinary (GU) toxicities are also significantly reduced. 
A normal tissue complication probability analysis in patients 
treated with IMRT reports that per 100 mL of bowel receiv-
ing 45 Gy spared, acute grade 2 GI toxicity is reduced by 50% 
[11]. With regards to the extended-field RT, volume of duode-
num receiving 55 Gy below 15 mL reduces the risk of grade ≥ 
2 duodenal toxicities while still allowing dose intensification 
to the involved LNs up to 60-66 Gy [12]. Significant reduc-
tion in pelvic bone marrow (BM) irradiation results in sig-
nificantly less incidence of anemia and thrombocytopenia in 
cervical cancer patients undergoing pelvic RT alone, which 
demonstrates the isolated impact of radiation on BM without 
additional influences of chemotherapy [13].
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Fig. 1.  Conceptual image of 2-dimensional (2D), 3-dimensional conformal (3D), and intensity-modulated radiotherapy (IMRT) showing 
the differences in high dose irradiated area (red solid line) and radiation intensities (black arrows). CT, computed tomography; MRI, mag-
netic resonance imaging; OAR, organs at risk; PET, positron emission tomography.
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2. Retrospective studies
In line with the dosimetric studies above, retrospective 

comparisons of IMRT to conventional RT in the adjuvant 
setting demonstrate significant reduction of both acute and 
chronic toxicities. Reducing the OAR dose using IMRT trans-
lates to significantly lower incidence of acute hematologic, 
upper & lower GI, and GU toxicities [13-15]. In case of late 
toxicities, significant improvement is found in GU and GI 
toxicities in IMRT. A retrospective study specifically focusing 
on bowel obstruction reports that IMRT reduces the 5-year 
bowel obstruction rate by 10-fold compared to 3D CRT (0.9% 
vs. 9.3%; p=0.006) [14]. However, no difference in progres-
sion-free survival (PFS) or overall survival (OS) between 
IMRT and 3D CRT is demonstrated in the adjuvant setting.

On the other hand, retrospective studies in the definitive 
setting not only report superior toxicity profiles but also 
improved PFS, cause-specific survival (CSS), and OS in the 
IMRT arm. In a study reporting superior PFS (65% vs. 57%, 
p=0.04), CSS (69% vs. 62%, p=0.01), and OS (61% vs. 57%, 
p=0.04) at 5 years for IMRT arm, disease control is most  
improved in patients with involved LNs [16]. Even with 
better efficacy, IMRT is still found to have significantly less 
grade ≥ 3 GI and GU toxicities. The prescribed dose of 50 
Gy in the study did not differ between the arms. When esca-
lated dose is prescribed to the involved LNs (61.5 Gy vs. 50.8 
Gy, p=0.046), IMRT shows further significant improvement 
in 5-year PFS (64.9% vs. 44.3%, p=0.031) [10]. Significantly 
less acute hematologic toxicities encompassing leukopenia, 
neutropenia, anemia, and thrombocytopenia are reported in 
IMRT compared to 3D CRT [17].

Landmark Studies and Current Guidelines

1. Definitive setting
The benefits in survival and toxicity profiles previously 

observed in the retrospective studies has been demonstrated 
in a large prospective cohort study (n=452) which finds the 
IMRT arm to have significantly better CSS and OS compared 
to conventional RT [18]. The rate of chronic grade ≥ 3 GI and 
GU toxicities is 6 times less in IMRT (8 vs. 54, p=0.035). Three 
randomized prospective trials in the definitive setting also 
report fewer acute and chronic toxicities in favor of IMRT 
compared to conventional RT. However, none of these tri-
als has found difference in disease-free survival (DFS) or OS  
between IMRT and conventional RT. A phase III trial by Gan-
dhi et al. [19] report that patients treated with IMRT signifi-
cantly experience fewer grade ≥ 2 (31.8% vs. 63.6%, p=0.034) 
and grade ≥ 3 acute GI toxicities (4.5% vs. 27.3%, p=0.047). 
IMRT is also associated with less chronic GI toxicities (IMRT 
13.6% vs. conventional 50%, p=0.011). The phase III trial by 

Yu et al. [20] demonstrates that the incidence of grade ≥ 3 
acute enteritis is lower (5.6% vs. 30.6%) in IMRT. Naik et al. 
[21] report significantly lower rate of acute grade ≥ 2 (20% 
vs. 45%, p=0.003) and grade ≥ 3 (5% vs. 20%, p=0.004) GI 
toxicities and lower rate of acute grade ≥ 3 GU toxicities (5% 
vs. 15%, p=0.004) in IMRT. A meta-analysis of IMRT in the 
definitive setting corroborates the above results by conclud-
ing that IMRT demonstrates equivalent efficacy with respect 
to DFS and OS at 3 years while significantly reducing acute 
GI and GU toxicities in addition to chronic GU toxicity [22].

2. Adjuvant setting
Consistent with the retrospective studies, prospective 

studies on IMRT in the adjuvant setting demonstrate satis-
factory efficacy and safety [23,24]. A prospective trial reports 
OS rate of 100% and PFS of 89% at 3 years [25]. Chronic grade 
≥ 3 GI and GU toxicity rates are each 4%. Another prospec-
tive study investigated the relationship between bowel irra-
diation and late grade ≥ 3 toxicity [26]. This group suggests 
to keep the volume irradiated by 15 Gy < 275 mL for small 
bowel and < 250 mL for large bowel in order to reduce the 
late grade ≥ 3 toxicity rate below 5%.

Key randomized trials comparing IMRT to conventional 
RT in the adjuvant setting are the TIME-C (NRG Oncology – 
RTOG 1203) trial and the PARCER (Postoperative Adjuvant 
Radiation in CERvical cancer) trial (Table 1). The TIME-C tri-
al assessed patient-reported acute toxicity and quality of life 
during treatment [27]. Both the acute GI (p=0.048) and GU 
toxicities (p=0.03) are significantly less in the IMRT group. 
At the end of RT, fewer patients in the IMRT group are found 
to suffer from diarrhea (33.7% vs. 51.9%, p=0.01) and require 
frequent antidiarrheal agent (7.8% vs. 20.4%, p=0.04). How-
ever, most of the patients included in the TIME-C trial were 
endometrial cancer and cervical cancer constituted less than 
20% of the patient population, owing to the aim of the study 
for assessment of acute treatment-related toxicity only, of 
which why further analysis of treatment outcome is unfea-
sible. On the other hand, the PARCER trial was conducted in 
a pure cohort of cervical cancer patients [28]. It reports sig-
nificantly lower rate of any grade ≥ 2 late toxicity (28.1% vs. 
48.9%, p < 0.001) and significantly fewer grade ≥ 2 late GI 
toxicity (21.1% vs. 42.4%, p < 0.001) in IMRT. The PARCER 
trial also reports oncologic outcome and there is no signifi-
cant difference in 3-year pelvic relapse-free survival (81.8% 
vs. 84%, p=0.55) and DFS (76.9% vs. 81.2%, p=0.089) between 
IMRT and conventional RT.

One notable issue regarding the trials in adjuvant set-
ting is the method of toxicity assessment. The TIME-C trial  
emphasizes the importance of patient-reported outcome 
for toxicity evaluation. The insignificant difference in late 
toxicity between IMRT and conventional RT according to 
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physician-reported outcome becomes significant when the 
analysis is performed using patient-reported outcome [29]. 
A recent post-hoc analysis of the PARCER trial also dem-
onstrates superior discriminative ability of adverse event  
reporting by patients compared to common toxicity evalua-
tion tool used by physicians such as the Common Terminol-
ogy Criteria for Adverse Events (CTCAE) [30].

3. BM sparing
The adoption of technological advance in RT for cervical 

cancer has generated a whole new field of BM sparing RT. 
In addition to the benefits of IMRT in reducing GI and GU 
toxicities, several studies explored the dosimetric advantage 
of IMRT in reducing hematologic toxicities. An early study 
reports that the volume of pelvic BM irradiated is signifi-
cantly less in IMRT [31]. The BM volume irradiated by 10 
Gy (V10) is significantly related to grade ≥ 2 leukopenia [32]. 
Another dosimetric study suggests V10 < 95% and V20 < 76% 
for reduction of grade ≥ 3 leukopenia [33]. Integration of  
18F-fluorodeoxyglucose (18F-FDG)-–positron emission tomog-
raphy/computed tomography (PET/CT) to define active BM 
subregions demonstrates that hematologic toxicities such as 
nadir of leukocyte, neutrophil, hemoglobin, and platelet are 
associated with active BM with higher activity in FDG-PET/
CT [34]. Another study using FDG-PET/CT to observe lon-
gitudinal changes in active BM reports that patients have 
variable subacute compensatory BM responses after defini-
tive concurrent chemoradiotherapy (CCRT) due to differing  
recovery in unirradiated BM subregions, which is particu-
larly vulnerable to intensive systemic chemotherapy [35].

In a prospective randomized controlled trial comparing 
BM-sparing IMRT to IMRT without BM constraints in the 
definitive setting, BM-sparing IMRT significantly lowers 
grade ≥ 2 hematologic toxicities by 20% [36]. RTOG 0418 is 
a multi-institutional phase II trial of IMRT in the adjuvant 
setting to test its feasibility for cervical and endometrial can-
cer. In an analysis focusing on the hematologic toxicity of 
RTOG 0418 trial, BM V40 < 37% and median BM dose < 34 Gy 
are significantly associated with reduced grade ≥ 2 toxicity 
[37]. The INTERTECC (INTernational Evaluation of Radio-
therapy Technology Effectiveness in Cervical Cancer) trial is 
a phase II/III trial testing the efficacy of PET/CT guidance 
in BM-sparing IMRT (Table 2) [38]. The phase III trial origi-
nally randomized patients to PET-guided BM-sparing IMRT 
versus conventional RT with PFS as the primary endpoint 
but was terminated early due to futility. The phase II compo-
nent of the trial compared the above two arms without ran-
domization and reports significantly reduced acute GI and 
hematologic toxicity for PET-guided BM-sparing IMRT, both 
in definitive and adjuvant setting [39]. In the final analysis 
including phase III patients, PET-guided BM-sparing IMRT 

significantly reduces acute grade ≥ 3 neutropenia compared 
to standard IMRT [38].

4. ASTRO (American Society for Radiation Oncology) 
Guideline

The capability of IMRT for reducing toxicity has been rep-
eatedly proven in several trials. However, the absence of 
high-level evidence for oncologic benefit of IMRT compared 
to conventional RT leaves the question asked at the intro-
duction of this review—whether IMRT remains to be just an  
option or not—also for the working group of ASTRO Cer-
vical Cancer Guideline. Currently, the recommendation of 
IMRT for cervical cancer is limited to adjuvant setting. The 
ASTRO guideline ‘strongly’ recommends IMRT in wom-
en with cervical cancer with postoperative RT in order to  
decrease acute and chronic toxicity [40,41]. The strength of 
recommendation is reduced to ‘conditional’ in women with 
cervical cancer treated with definitive RT. Current recom-
mendations are based on the toxicity reducing effect of IMRT 
with greater magnitude in the adjuvant setting compared to 
the definitive setting. The benefits of toxicity reduction are 
more apparent in the adjuvant setting, in patients who are 
more sensitive to radiation toxicities superimposing on the 
aftereffects of surgery. However, growing body of literature 
point towards the potential benefits of IMRT for improving 
tumor outcome.

Potential Benefits

1. Enhancing local control
1) Systemic therapy
Although non-bulky tumors are well controlled with the 

current standard of concurrent chemoradiation followed by 
brachytherapy, loco-regionally advanced disease still neces-
sitates further improvement of tumor outcome. The attempts 
to improve durability of treatment have been tried in diverse 
aspects including intensifying systemic therapy as well as  
local therapy. The recent preliminary report of the OUT-
BACK trial which tested the role of adjuvant chemothera-
py after completion of standard chemoradiation in locally  
advanced cervical cancer shows negative results [42]. Adju-
vant chemotherapy has no effect on OS or PFS and instead, it 
is associated with approximately 20% higher rate of toxicity.

2) Brachytherapy
The failure of additional systemic therapy in improving 

tumor outcome draws attention to intensifying local thera-
py. The most effective form of consolidative therapy on the 
primary site is brachytherapy rather than EBRT [43]. Recent 
efforts for dose escalation on the primary site use the image-

Sea-Won Lee, IMRT for Cervical Cancer
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guided adaptive brachytherapy. Similar to EBRT, techno-
logical advances have enabled 3D application of brachyther-
apy with either CT or magnetic resonance imaging (MRI),  
allowing higher dose delivery to primary disease and lower-
ing radiation exposure of OARs. The multicenter retrospec-
tive RetroEMBRACE study including 731 patients reports  
excellent local control (89%), pelvic control (84%), CSS (65%), 
and OS (73%) with 5%-7% severe GI and GU toxicities at 5 
years [52]. These results are corroborated by the multicenter 
prospective EMBRACE I study showing that dose escala-
tion to the cervical mass has significantly improved outcome 
up to a 5-year local control (LC) rate of 92% across stages 
I to IV with severe late toxicities of 3%-9% [44]. However, 
para-aortic nodal failure is found to be the major challenge 
for nodal control in RetroEMBRACE and EMBRACE I stud-
ies. In RetroEMBRACE and EMBRACE I, only 9% and 27%,  
respectively, were treated with IMRT and the rest were con-
ventional RT. Consequently, EMBRACE II study is initiated 
to prospectively validate MRI-guided adaptive brachyther-
apy with the most up-to-date IMRT techniques to escalate 
dose to LN and de-escalate dose to normal organs [45].

3) IMRT boost with brachytherapy
Moreover, dose escalation to cervical mass by adding 

IMRT boost to brachytherapy also has been explored. Dose 
escalation by simultaneous boost to FDG-avid cervical  
tumor during IMRT is found to be dosimetrically feasible 
[53]. Dosimetric studies also demonstrate improved cervical 
tumor and parametrial coverage with concurrent addition of 
IMRT boost to brachytherapy [54-56]. A retrospective study 
reports LC of 88% and DFS of 76% at 5 years [57].

4) Stereotactic ablative body radiotherapy boost to bra-
chytherapy-infeasible tumors

Although brachytherapy is the optimal modality for con-
solidative RT to the primary site, stereotactic ablative body 
radiotherapy (SABR) boost to the cervical mass can be an 
excellent alternative to brachytherapy when it is not feasi-
ble due to tumor obstruction, anatomical variation, comor-
bidities, and patient refusal [58]. SABR is a highly focused 
IMRT technique which intensifies dose concentration on  
tumor while effectively reducing dose to surrounding nor-
mal organs. There are few prospective trials and several 
retrospective studies reporting the feasibility and safety of 
SABR boost on cervical mass [46,59,60]. Small retrospective  
series report 3-year LC rate of up to 80%, modest PFS app-
roximating 60%, and 2-year CSS rate of 90% [61]. Another 
multicenter retrospective study reports a 5-year PFS of 70% 
[60]. In a prospective single center study, LC rate is 73% with-
out grade ≥ 3 late toxicity [47]. With lack of direct comparison 
between SABR and brachytherapy as the boost modality in 

Sea-Won Lee, IMRT for Cervical Cancer
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definitive RT of locally advanced cervical cancer, National 
Cancer Database data shows inferior survival in patients 
treated with SABR boost [8]. There are concerns that wide-
spread IMRT technique resulting in active administration 
of SABR instead of brachytherapy has induced detrimental  
effects on survival [43]. A single institutional single arm 
phase II study of SABR boost was closed early due to tox-
icity and lower-than-expected tumor outcome [59]. Despite 
all these limitations, SABR boost is comparable to historical 
results [62] and even satisfactory in patients not feasible for 
brachytherapy, who are likely to be senile with underlying 
comorbidities.

5) Hypofractionated IMRT
Another approach to improve LC using IMRT is hypofrac-

tionation. Concurrent chemotherapy improves OS by 7.5% 
at the expense of acceptable acute grade 3-4 toxicities [62,63]. 
However, there are clinical scenarios where patients are  
unable to receive concurrent chemotherapy such as locally 
advanced disease with impaired renal function, borderline 
cardiac function, and other comorbidities. In those cases,  
hypofractionated IMRT can be an effective alternative.  
Hypofractionated RT increases the dose per fraction to ≥ 2.5 
Gy up to a total dose of 39-40 Gy in 13-16 fractions. It reduces  
total treatment time and is radiobiologically more effective 
for tumor control [64]. Retrospective studies on stage IIIB 
cervical cancer treated with hypofractionated conventional 
RT shows complete response in 70% and DFS approximat-
ing 60% at 5 years [65,66]. An ongoing I/II trial with hypo-
fractionated IMRT uses simultaneous boost to LN in defini-

tive RT alone without chemotherapy [48]. Another ongoing 
phase II trial is testing hypofractionated IMRT alone in the 
adjuvant setting [50]. On the other side, hypofractionated 
RT is also delivered with concurrent chemotherapy. In this 
context, hypofractionated RT is selected to further augment  
tumor control rather than to replace the missing effect of 
chemotherapy in contraindicated patients. Prospective phase 
I/II trial of stage IIIB cervical cancer testing hypofractionated 
RT given concurrently with chemotherapy reports complete 
response in 85% and 5-year OS of 59% [67]. There is an ongo-
ing phase II trial for hypofractionated IMRT with concurrent 
chemotherapy in the adjuvant setting [50].

2. Enhancing regional control
Similar to the dose escalation trials for primary mass, 

several dose escalation studies for nodal disease have been 
conducted. Even with the most advanced local therapy,  
total nodal failure rates are 11%-13% in the EMBRACE-I and 
RetroEMBRACE studies, with higher rate of 16% in the node 
positive cohort [44,52]. Because extended-field RT to the  
para-aortic node (PAN) includes a long segment of abdomi-
nal irradiation, physicians have been reluctant to irradiate 
PAN for prophylactic purpose due to concerns of abdominal 
toxicities in the 3D era. However, IMRT has enabled effective 
irradiation to PAN with tolerable abdominal toxicity. Dose 
escalation to LN can be either delivered sequentially or by 
simultaneous integrated boost (SIB). Sequential boost allows 
adaptive delivery of radiation according to reduced nodal 
size during the course of RT, usually up to 55-65 Gy. SIB  
delivers higher daily doses of 2-2.5 Gy up to 50-60 Gy within 

Cancer Res Treat. 2024;56(1):1-17

Fig. 2.  Adaptive intensity-modulated radiotherapy shows significant reduction of both cervical mass and bulky lymph nodes at initiation 
of radiotherapy (A) compared to adaptive replanning at 40 Gy (B).

A B
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shorter overall treatment time, which is supposed to have 
greater radiobiological effect at least theoretically. An exam-
ple of adaptive RT to bulky LN is shown in Fig. 2. Planning 
studies report superior dosimetric parameters with SIB com-
pared to conventional RT [68]. When compared to sequen-
tial IMRT boost, SIB is non-inferior [69,70]. A dose escalation 
study using SIB of 56.25 Gy in 25 fractions to LN reports 
3-year OS, PFS, and loco-regional control rates of 67%, 60%, 
and 89%, respectively, in clinically node positive cervical 
cancer undergoing definitive CCRT [71]. Acute grade ≥ 3 GI 
and GU toxicities occurred in 3% and overall late GI or GU 
toxicity rate was 12%. In a recent trial testing newer chemo-
therapeutic agent in adjunction with cisplatin for definitive 
CCRT, SIB to LN up to 60 Gy is tolerable with complete  
response in > 90% [72]. PET/CT has 20%-25% false nega-
tive rate for PAN in patients with PET-positive node limited 
to the pelvis [73,74]. An interesting study which addresses 
this issue tested the value of PAN irradiation in this specific  
cohort of patients with pelvic nodal involvement only. They 
report a significantly improved PAN failure rate of 2.5%, 
without surgical removal of PAN [75]. However, a recent 
study reports reduced nodal control in cases of nodal dose 
below 60 Gy and large node size over 2 cm [76]. Another  

recent dose escalation trial tested dose intensification up to 
70 Gy in 25 fractions (2.8 Gy per fraction) without any grade 
≥ 3 GI or GU toxicities [49]. An ongoing multi-institutional 
phase II randomized trial compares two different regimens 
of hypofractionated IMRT given with concurrent chemo-
therapy to test feasibility of higher dose SIB to LN [51]. The 
results of these trials may bring changes to the current stand-
ards of definitive CCRT.

3. Downstaging of systemic disease
Based on the spatially sequential pattern of disease spread, 

intensifying local treatment in distant metastasis especially 
to the distant nodal regions such as the supraclavicular (SCL) 
have been increasingly studied in the recent years. With a 
curative intent, 60 Gy to the SCL metastasis along with the 
standard CCRT to the pelvis achieves a comparable 3-year 
OS rate of 49% [77]. In a study on cervical cancer patients 
with distant nodal metastases, CCRT shows significant sur-
vival benefit over systemic chemotherapy alone [78]. Accord-
ing to a more recent study, definitive RT to oligometastatic 
sites shows a 3-year OS rate of 65% [79]. SABR to oligometa-
static cervical cancer achieves complete response in 55.4% 
with 2-year LC rate of 89% [80]. The 2-year OS approximat-

Fig. 3.  18F-Fluorodeoxyglucose–positron emission tomography/computed tomography (A) adoptive intensity-modulated radiotherapy 
(B) in oligometastatic cervical cancer treated with salvage stereotactic ablative body radiotherapy.

A B

Fig. 4.  Compared to intensity-modulated radiotherapy (IMRT) without ovary sparing (A), the ovary sparing IMRT (B) saves ovaries (yel-
low outline) from high dose irradiation.

A B
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ed 70% in patients with complete response versus 44% in  
patients with suboptimal response. Excellent LC > 97% and 
median OS over 50 months with minimal toxicity is shown in 
a smaller study [79]. Major pattern of relapse is outfield with 
half of patients with regional or distant failure at 2 years after 
RT. FDG-PET/CT is essential in selection of targets for SABR 
as shown in ongoing randomized phase III trials testing the 
effect of SABR in oliogmetastatic disease which strongly rec-
ommend PET/CT for target definition [81-83]. Accordingly, 
precision medicine using PET-adoptive oligometastatic 
IMRT has the potential to further maximize treatment effi-
cacy (Fig. 3). Owing to the radiosensitive nature of squamous 
cell carcinoma, tailored RT to the distant sites enabled by 
IMRT may contribute to improving survival, provided that 
potentially curable distant LN metastasis are appropriately 
selected (e.g., low disease burden of SCL metastasis suggest-
ing low probability of synchronous microscopic metastasis to 
the next echelon of spread).

4. Prevention of pelvic insufficiency fracture
In a meta-analysis including 3,929 patients who received 

EBRT on the pelvis for gynecologic cancers of which major-
ity were cervical cancer, overall pelvic insufficiency fracture 
(PIF) rate is 14% [84]. IMRT significantly (p=0.0299) lowers 
the rate of fracture (6%) and conventional RT is associated 
with 2.6-4.3 times more PIF. Median time to fracture is 7-19 
months after completion of EBRT. The most common site of 
PIF is sacroiliac joint (40%), followed by sacral body (34%), 
pubis (13%), lumbar vertebra (7%), iliac bone (3%), acetabu-
lum (2%), and femoral head or neck (1.5%). A direct com-
parison of damage to pelvic bone between IMRT and con-
ventional RT also demonstrates significant reduction of risk 
in IMRT (p=0.01) [85]. When IMRT shows PIF in 4%, the rate 
of all pelvic bone complications in conventional RT is 17%: 
PIF (11%), osteonecrosis (2%), and osteomyelitis (4%). Latent 
osteoporosis occurred in 5% of patients treated with conven-
tional RT. In a study on PIF of patients undergoing definitive 
CCRT using IMRT with SIB on the LN up to 60 Gy, 20% is 
shown to have a median of 2 PIFs of which half is asympto-
matic [86]. Similarly, sacrum is the most common site of PIF 
(77%). Age is a significant risk factor for PIF and age over 50 
has significantly higher rate of PIF (37% vs. 4%, p < 0.001). 
Dosimetrically, reduction of sacrum receiving 50% of pre-
scription dose (D50%) from 40 Gy to 35 Gy translates to risk 
of PIF from 45% to 22% (p=0.04), suggesting 40 Gy as a prac-
tical cutoff for PIF. Because majority of the patients under-
going pelvic RT for cervical cancer are postmenopausal, this 
study draws attention to awareness for RT planning especial-
ly in patients with old age. In an observational cohort study 
including 28,354 patients with age ≥ 65 who underwent RT 
for all pelvic malignancies, IMRT significantly reduces the 

risk of PIF (hazard ratio, 0.85; 95% confidence interval, 0.73 to 
0.99) [87]. In summary, current evidence strongly advocates 
IMRT for all patients requiring pelvic RT and shows that it is 
indispensable especially in senile patients. Because 40%-50% 
are asymptomatic at diagnosis of PIF, surveillance focused 
on bone complication is warranted [84,86]. Data regarding 
potential benefits of bone-strengthening medications in this 
specific setting are awaited.

5. Preservation of hormonal functions and fertility
With improved survival of female cancer patients at repro-

ductive and premenopausal age [88], cancer survivorship 
has evolved to comprise fertility and hormonal functions. 
The efforts to preserve fertility and hormonal functions in 
gynecologic cancer patients have been attempted in various 
ways including minimal surgery, ovary transposition, and 
ovary- or uterus-protective medications. RT-wise, ovary-
sparing with IMRT has been shown to significantly reduce 
the dose irradiated to the ovaries in pelvic malignancies (Fig. 
4) [89,90]. However, the goal of ovary-sparing with IMRT is 
to preserve hormonal function. The minimal dose acceptable 
for ovum is close to background dose [91], so even with ova-
ry transposition in addition to ovary-sparing with IMRT, fer-
tility preservation is unachievable. Transposition of an ovary 
to the para-colic gutter can spare the ovary from high dose 
irradiation, but it cannot completely obviate the radiation  
itself, thus allowing a certain amount of low dose irradiation 
to the transposed ovary. If patients wish to conceive, assisted 
reproductive specialist should be consulted before initiation 
of treatment. There also have been anecdotal reports of uter-
ine-sparing RT with curative dose to the cervix alone which 
lead to successful pregnancy [89]. Uterine-sparing IMRT 
may be recommended as an option to the cervical cancer 
patients who firmly wish to conceive, although the risks of 
compromising cancer survival without successful preserva-
tion of fertility should be strongly acknowledged.

Unsolved Issues

1. Undefined timing, target, and dosage
With broadening implementation of IMRT as reviewed 

above, new problems emerge such as when the optimal tim-
ing of IMRT is, where it should be given, and how much. 
Advances in RT technology as well as systemic therapy are 
constantly re-shaping the landscape of cervical cancer treat-
ment. Even stage IV patients with dissemination can reach 
the state with no evidence of disease, at least temporarily. 
Oligoprogression raises the question of when IMRT should 
be given and whether in adjunction with systemic therapy 
or not. Optimal dosage and regimens for IMRT to cervical 
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cancer in various clinical settings have not been definitively  
established. In case of nodal oligometastasis, the target vol-
ume is undefined because whether IMRT to the isolated node 
is enough or addition of regional nodal irradiation is neces-
sary is unknown. The role of newer biomarkers such as cir-
culating tumor DNA for these kinds of clinical scenarios has 
been suggested [92]. This review has focused on dose escala-
tion with IMRT to improve LC. However, salvage surgery 
after incomplete response to the standard definitive CCRT in 
locally advanced cervical cancer is another field of research 
under active investigation [93]. If high level evidence sup-
porting salvage surgery is demonstrated, RT may evolve into 
de-escalation of dose for prevention of fibrosis, thus trading-
off the benefits and the needs for IMRT.

2. Shortcomings and limitations
Another major limitation of IMRT is that it is a time-, 

resource-, labor-intensive, and thus expensive treatment 
compared to conventional RT [94]. Although current evi-
dence shows significant reduction of toxicities and potential  
improvement of tumor control in IMRT, whether side effects 
of conventional RT are fatal is another issue. The cost-effec-
tiveness analyses in both the definitive and adjuvant settings 
show questionable cost-effectiveness regarding actual clini-
cal effectiveness by IMRT [94,95]. The ASTRO guideline is 
also aware of certain circumstances of shortcomings such as 
less provider experience and shortage of facility resources 
[41]. Considering the balance between resource input and 
clinical outcome, the current standard of conventional RT 
appears to be reasonably acceptable.

3. Uncertainties from organ movement
The uterine body and cervix is a highly movable organ 

because its position depends on the variable filling of adja-
cent bladder and rectum [96]. Rapid reduction of cervical 
tumor during the course of definitive RT is another factor 
affecting organ movement [97]. Cervical tumor is reported 
to show mean reduction of 62% after 45 Gy. A systematic 
review including 39 studies on cervical cancer treated with 
definitive IMRT reports that uterus is more mobile than cer-
vix [98]. Inter-fractional studies show that uterine motion 
can range up to anterior-posterior (AP) 48 mm and superior-
inferior (SI) 32 mm, compared to AP 19 mm and SI 12 mm 
for cervix. Bladder filling is more associated with uterine 
motion while rectal filling is more associated with cervical 
and vaginal motion. This study reports that intra-fractional 
cervical motion is negligible and easily covered by internal 
margin. However, in a study including patients with large 
tip-of-uterus displacement > 2.5 cm between full and empty 
bladder, cervical motion up to SI 5.8 mm is observed [99]. 
In the adjuvant setting, vaginal motion is investigated in a 

prospective study [100]. The median vaginal displacement 
is shown to be AP 2.8 mm, SI 4 mm, and medio-lateral (ML) 
1.2mm. The displacement is adequately covered with inter-
nal margins of AP 10.6 mm, SI 10.3 mm, and ML 4.1 mm. 
In essence, a major limitation of IMRT in cervical cancer is 
the challenge of extrapolating how the IMRT is performed in 
the setting of multiple fractionated RT. It becomes a greater  
issue when the dose delivered by IMRT is escalated. Ano-
ther limitation is that radiosensitive cervical tumors rapidly  
regress over the course of RT and overdose to OARs around 
regressed cervical tumors can obscure the benefits of IMRT 
conformity. Despite the development of several empirical 
ways to reproduce the target position such as prone position 
with belly board, filling the bladder with regular amount of 
normal saline through Foley catheter, emptying the rectum 
by enema, using fiducial markers, and on-line image guid-
ance, the issue of organ movement has not been completely 
resolved [101-105]. These limitations draw special attention 
to the rapidly developing adaptive RT.

Future Perspectives

1. Adaptive RT
There are several strategies available for adaptive RT, one 

of which to adopt patient-based individualized margins  
instead of population-based margins [106]. The tip-of-uterus 
motion due to bladder filling ranges by AP 0-65 mm and SI 
5-40 mm [107]. However, the planning target volume (PTV) 
remains large considering the additional margin of 5-7 mm 
for set-up error [103]. In order to solve this problem, off-
line adaptive replanning either scheduled in advance or  
impromptu has been studied. Weekly replanning enables 
IMRT with smaller margins, at the cost of increased work-
load required for generation of multiple plans [108]. Another 
approach is creating a library of plans for each patient using 
individualized internal margins, also known as ‘Plan-of-the-
Day’ technique. The difference in PTV is median 48%, with 
reduction of bladder and rectal volumes included within 
PTV by 5%-45% and 26%-74%, respectively [109]. The num-
ber of plans required to adequately cover target volumes is 
median 3-5 [110]. ‘Plan-of-the-Day’ demonstrates significant-
ly superior coverage of target volumes than standard plan 
with fixed margin [111]. For administration of this technique, 
RT therapist needs to be trained in order to select the optimal 
‘Plan-of-the-Day’. This approach also requires heavy work-
load, twice as much compared to non-adaptive RT [112].  
Another more upfront technique is online adaptive RT 
with daily replanning, either with MRI or CT. This strategy  
addresses the day-to-day anatomical variability observed 
in target and OAR volumes along with the daily changes in 
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tumor volume [113,114]. Again, the implementation of these 
most recent techniques require additional workforce with 
further training, despite automation of contouring and RT 
plan generation are available by computational advance-
ments [106]. Although the limitations of IMRT equally app-
lies to adaptive RT in terms of balancing the cost-effective-
ness and clinical benefits, adaptive RT is currently an active 
field of investigation with promising outcomes.

2. Ongoing studies
The comparison between IMRT and conventional RT  

appears to have become obsolete at present, although there 
is an ongoing phase II randomized trial specifically focusing 
on stage IIB cervical cancer [115]. The inclusion of IMRT as 
a mandatory component in the study design of majority of 
ongoing clinical trials on cervical cancer reflects the routine 
implementation of IMRT in daily clinical practice. Currently 
ongoing trials mostly focus on improving treatment efficacy 
with application of most advanced technology and novel 
agents. The previously mentioned EMBRACE II trial aims 
to maximize tumor control with cutting-edge brachythera-
py in adjunction with most modern IMRT techniques [45].  
Recently released results of the NRG-GY006 trial, a phase III 
randomized trial testing triapine plus cisplatin CCRT fails 
to show survival benefit [116]. Similarly, the initial results 
from the CALLA trial, a phase III randomized trial testing 
durvalumab in combination with and following cisplatin 
CCRT, is also negative [117]. NRG-GY017 trial is a phase II 
trial testing atezolizumab with cisplatin CCRT using IMRT 
[118]. Whether a newer agent can further enhance the dis-
ease outcome achieved with modern IMRT techniques to be 
revealed in the EMBRACE II trial remains to be seen. The 
LiLACS trial is a phase III trial comparing surgical versus 
clinical staging in locally advanced cervical cancer under-
going CCRT [119]. A similar Uterus-11 multicenter phase 
III trial reports that surgical staging leads to extended-field 
RT by two-fold [120]. Combining surgical approach with the 
newest radiation techniques may provide a breakthrough for 
poor prognostic subgroup, which however, requires further 
accumulation of evidence.

3. Future directions
As previously reviewed, there are several potential bene-

fits of IMRT in enhancing local, regional, and even oligomet-
astatic disease control. Currently, we are in need of a well- 
designed prospective trial testing the ultimate impact of IMRT 
with dose escalation in diverse clinical settings, with delicate 
control of the factors directly affecting tumor outcome such 
as brachytherapy, LN boost, dosage, and sequencing. Factors 
affecting toxicity outcome such as motion management of 
internal organs should also be initially planned in the trial 

design. With implementation of the most up-to-date techno-
logical advances such as IMRT and image-guided adaptive 
brachytherapy in addition to newer systemic therapies and 
minimally invasive surgical techniques, further prolongation 
of cervical cancer survival is anticipated.

Conclusion

The discussion brings us back to square one: is IMRT an 
option or a must? Toxicity-wise, it is a must for postopera-
tive RT in the least. A large body of evidence support the  
potential impact of IMRT for improvement of local, regional, 
and distant control. IMRT can be indispensable in special 
circumstances such as where brachytherapy is infeasible. 
Cutting-edge adaptive IMRT maximizes treatment efficacy 
and minimizes treatment-related toxicities. IMRT is a must 
in meeting the escalating expectations of oncologists regard-
ing improvement of treatment efficacy and patients’ desires 
for minimizing treatment-related toxicities. What if IMRT is 
unavailable due to practical reasons? No need for guilt, con-
ventional RT is still a legitimately standard treatment. Con-
stant efforts to find the optimal orchestration of the available 
modalities including EBRT, brachytherapy, systemic therapy, 
and surgery tailored to individual patient may prove satis-
factory.
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