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Purpose  Triple-negative breast cancer (TNBC) is a breast cancer subtype that has poor prognosis and exhibits a unique tumor 
microenvironment. Analysis of the tumor microbiome has indicated a relationship between the tumor microenvironment and treat-
ment response. Therefore, we attempted to reveal the role of the tumor microbiome in patients with TNBC receiving neoadjuvant 
chemotherapy. 
Materials and Methods  We collected TNBC patient RNA-sequencing samples from the Gene Expression Omnibus and extracted  
microbiome count data. Differential and relative abundance were estimated with linear discriminant analysis effect size. We calcu-
lated the immune cell fraction with CIBERSORTx and conducted survival analysis using the Cancer Genome Atlas patient data. Cor-
relations between the microbiome and immune cell compositions were analyzed and a prediction model was constructed to estimate 
drug response.
Results  Among the pathological complete response group (pCR), the beta diversity varied considerably; consequently, 20 genera 
and 24 species were observed to express a significant differential and relative abundance. Pandoraea pulmonicola and Brucella 
melitensis were found to be important features in determining drug response. In correlation analysis, Geosporobacter ferrireducens, 
Streptococcus sanguinis, and resting natural killer cells were the most correlated factors in the pCR, whereas Nitrosospira briensis, 
Plantactinospora sp. BC1, and regulatory T cells were key features in the residual disease group. 
Conclusion  Our study demonstrated that the microbiome analysis of tumor tissue can predict chemotherapy response of patients 
with TNBC. Further, the immunological tumor microenvironment may be impacted by the tumor microbiome, thereby affecting the 
corresponding survival and treatment response.
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Tumor Microenvironment Can Predict Chemotherapy Response of Patients with 
Triple-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy

Introduction

Breast cancer is one of the most commonly diagnosed can-
cers and the most prevalent cause of cancer-related death in 
women [1,2]. Breast cancer is divided into subtypes accord-
ing to expression of the estrogen, progesterone, and human 
epidermal growth factor 2 receptors. Triple-negative breast 
cancer (TNBC) accounts for roughly 15%-20% of all breast 
cancers and is defined as having no expression of any of the 
aforementioned receptors [3,4]. In particular, TNBC is preva-
lent in premenopausal women and those who have BRCA 
gene mutations [4,5]. TNBC varies from other types of breast 
cancer in that it has fewer treatment options, tends to have a 

worse prognosis, and tends to grow and spread more quickly 
[6]. The tumor microenvironment in TNBC exhibits a high 
expression of tumor-infiltrating lymphocytes (TILs), tumor-
associated macrophages (TAMs), and vascular endothelial 
growth factors [7,8]. CD8+ T lymphocytes, which are abun-
dant in TNBC, possess a relationship with prognosis [9,10]. 
The prevalence of FOXP3+ regulatory T cells (Tregs), which 
can reduce anti-tumor immunity, is higher in the microen-
vironment than normal tissue [11,12]. Further, granulocyte 
colony-stimulating factor secretion, which can initiate the 
transformation of M1-type to M2-type macrophages, is more 
abundant in TNBC [13]. Overall, this unique microenviron-
ment affects prognosis and treatment response.
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In the treatment of early-stage TNBC, neoadjuvant chem-
otherapy (NAC) before surgery is widely used. NAC can 
shrink the tumor to reduce the range of surgery, improv-
ing the patients’ quality of life; additionally, this treatment  
exhibits similar efficacy to adjuvant chemotherapy in terms 
of survival and recurrence rate [14,15]. NAC can also veri-
fy if the tumor responds to the chemotherapy, and may be 
more beneficial than adjuvant chemotherapy because addi-
tional chemotherapy can be administered if residual tumors  
remain after NAC and surgery [16].

In patients receiving NAC, chemotherapy tumor response 
appears differently. Some patients achieve pathologic com-
plete response (pCR) after NAC, while some others have 
no response or worsen. Achieving a pCR has been shown 
to predict clinical benefits in terms of relapse and overall 
survival [17]. It has been reported that 35%-45% of patients 
obtained pCR with the standard NAC regimen of anthracy-
cline, cyclophosphamide, and taxane [18]. Recently, addi-
tional treatments, including immune checkpoint inhibitor 
or poly(ADP-ribose) polymerase inhibitors, have also been 
actively implemented to enhance the efficacy of NAC [19,20].

Assessment of tumor response after NAC can predict 
prognosis; however, if the tumor response to NAC can be 
anticipated before NAC treatment, it would be helpful to  
ascertain the most appropriate treatment options. For ins-
tance, if we can predict the response before NAC, NAC can 
be performed on patients with anticipated pCR, and patients 
who are expected to have little response may be first con-
sidered for additional treatments or surgery. However, there 
are currently few biomarkers or methods that can predict the 
response to NAC.

The microbiota, which includes bacteria, fungi, and virus-
es, is located in the human gut, skin, and most of the body; 
nonetheless, the microbiota is also found within tumors. In 
the past, many studies have focused on the role of the micro-
biome in the gut; however, recent studies on the role of the 
microbiome in tumor tissues have been reported. Overall, 
it would be important to study the correlation between the  
tumor microenvironment and microbiome of TNBC via  
microbiome analysis and determine if these correlations are 
related to the treatment response.

Therefore, in this study, we conducted analysis to dis-
cover potential biomarkers for predicting the response to 
NAC in patients with TNBC. Further, microbiome profiling 
conducted in the tumor tissue was performed to develop a 
model that could predict the corresponding tumor response 
to NAC.

Materials and Methods

1. Public data collection
Breast cancer RNA-sequencing data and corresponding 

patients’ clinical characteristics were downloaded from the 
Gene Expression Omnibus (GEO) and The Cancer Genome 
Atlas (TCGA). We searched for the data from GEO using the 
keywords “breast cancer”, “triple-negative”, and “drug”,  
ultimately, obtaining the GSE163882 dataset (n=222) [21]. 
This data was downloaded using R GEOquery package 
(ver. 2.62.2 [22]). TCGA RNA-sequencing and clinical data 
(n=1,097) were downloaded from the Broad Institute Geno-
me Data Analysis Center Firehose database (https://gdac.
broadinstitute.org/) and Genomic Data Commons (GDC) 
data portal (https://portal.gdc.cancer.gov/projects/TCGA-
BRCA). We included TNBC and paired-end RNA-sequenc-
ing data from public databases. Processed microbial count 
data of TCGA breast cancer was obtained from ftp://ftp.
microbio.me/pub/cancer_microbiome_analysis/ [23]. The 
overall process of analysis in this study is shown in Fig. 1.

2. Analysis of the microbiome
To obtain the taxonomic classification, we used Kraken2 

[24] and the Minikraken2_v1 database. Next, the Bracken 
[25] algorithm was used for estimating the abundance of  
microbiota in sample data. The microbial count data were 
obtained according to phylum, genus, and species level.

Processed microbial count data were divided into two sub-
groups: pCR and residual disease (RD). Diversity analysis 
was performed using a species level dataset via the phyloseq 
package ver. 1.38.0 [26]. Alpha diversity was calculated using 
the Chao1 and Shannon indices. Beta diversity was measured 
using Bray-Curtis dissimilarity; permutational multivariate 
analysis of variance (PERMANOVA) was used to examine 
statistical differences between the response group. Lin-
ear discriminant analysis effect size (LEfSe) was calculated  
using the Huttenhower Lab Galaxy Server [27] to investigate 
differentially abundant microbiota. LEfSe uses the Kruskal-
Wallis test and linear discriminant analysis (LDA) to investi-
gate a significant factor. A statistically notable difference was 
considered at a p-value < 0.05 and LDA score > 1.5.

3. Immune cell fraction analysis
Immune cell fractions of two datasets were calculated  

using CIBERSORTx [28], based on an autonomously provid-
ed LM22 signature matrix with 100 permutations. Quantile 
normalization was disabled due to the provided guideline 
of the tool. 
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4. Survival analysis
Kaplan-Meier analysis was performed by survival pack-

age (ver. 3.2-13 [29]) to analyze 5-year survival alongside 
TCGA’s microbiome count and immune cell fractional data. 
Due to the absence of drug response data in the TCGA data-
set, microbial expression data and immune cell fraction val-

ues were regrouped into high and low expression groups 
based on the middle and mean values, respectively, of each 
datum’s expression.

5. Co-occurrence network
The correlation between microbiota at the species level and 

CIBERSORTx

Correlation analysis

Differential abundance
analysisAlpha & beta

diversity analysis 

Relative abundance
analysis

Machine learning

Survival analysis
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ROC curve

Train/test set

Model

RNA-seq count data
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(TCGA-BRCA, n=1,097)

134 Samples 982 Samples
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from TCGA

TNBC microbiome
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from TCGA (n=115)
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count data
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(n=88)
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Remove filtered
samples

Fig. 1.  Flowchart of the analysis process in this study. GEO, Gene Expression Omnibus; RNA-seq, RNA-sequencing; ROC curve, receiver 
operating characteristic curve; TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast cancer.
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immune cells was analyzed by the drug response group. A 
Spearman’s rank correlation test, provided by the R Hmisc 
package ver. 4.7-0 [30], was used for analysis. Then, for those 
with a correlation p-value of < 0.05, a co-occurrence network 
was visualized using Cytoscape ver. 3.9.0 [31].

6. Machine learning
To predict the drug response using microbiota and immu-

ne cells, we built a prediction model. To build a model, we 
used two different types of classifiers: the support vector  
machine (SVM), from the e1071 package ver. 1.7-9 [32], and 
the random forest (RF) method, from the RF package ver. 
4.7-1.1 [33] in R. We selected several features, specifically  
selecting taxa at the species level and immune cell subtypes 
and composed multiple feature sets with different up-sam-
pling and amplification methods. Feature scaling was app- 
lied to the data when the model was trained with SVM clas-
sifiers. The train-test and validation sets were organized by 
classifying the data at an arbitrary 8:2 ratio. Based on the con-
figured train-test datasets, we trained the model by selecting 
classifiers with a 5-fold cross-validation method; the accu-
racy of the trained model was measured through a separated 
validation set.

Although the sequencing data for microbiome assignment 
were not available, we obtained pertinent information regar-
ding a gene recognized for its influence on drug response in 
breast cancer from the study conducted by Hatzis et al. [34]. 
Subsequently, we performed a correlation analysis between 
the microbiome and genes associated with drug response to 
indirectly validate our study.

Results

Detailed information on patients is provided in Table 1. No 
significant difference was found between the patient’s age, 
cancer stage, and grade (p > 0.05). 

1. Microbiome composition according to the drug response 
group

To determine overall microbial composition, we compared 
the relative abundance of the pCR and RD groups at the 
phylum and genus level (Fig. 2A). At the phylum level, we  
selected all the 23 phyla that showed an expression in Krak-
en; nonetheless, there was no big difference between the two 
groups. Within the genus level, we examined the top 30 taxa 
with high abundance, and 31 genera were used for analysis. 
The overall relative abundance was lower in the RD response 
group and the difference of several taxa, such as Pasteurella, 
Klebsiella, and Vibrio, was exhibited. No difference in alpha 
diversity was observed across both the Chao1 and Shannon 
indices (Fig. 2B). However, the beta diversity of the pCR and 
RD groups differed significantly (p < 0.05) (Fig. 2C).

Differential abundance analysis using LEfSe was conduct-
ed to determine an enriched microbiome from each response 
group. At the genus level, 32 taxa were identified as signifi-
cantly different (S1A Fig.). However, we assumed that some 
taxa may potentially appear as enriched because of outli-
ers present; therefore, the relative abundance of each genus 
was additionally analyzed. As a result, 20 genera exhibited 
a clear difference in relative abundance (S1B Fig.). Next, we 
analyzed differential abundance at the species level. Conse-

Table 1.  Patient characteristics in this study

Characteristic
  GEO data  TCGA data

 pCR (n=38) RD (n=50) p-value (n=115)

Age (yr) 52.2±11.5 55.8±11 0.146 54.7±11.9
Cancer stage  
    1   4   8 0.316   19
    2 26 28    72
    3   6 14    19
    4   0   0      2
    NA   2   0      3
Cancer grade    
    1   0   1 0.394 -
    2   8 15  -
    3 30 34  -
Vital status    
    Alive - - - 100
    Dead - -    15

The p-values were measured using a t test and chi-square test. GEO, Gene Expression Omnibus; NA, not available; pCR, pathological 
complete response; RD, residual disease; TCGA, The Cancer Genome Atlas. 
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quently, 42 species exhibited a significant difference between 
response groups (Fig. 2D). Relative abundance analysis was 
also conducted at the species level; consequently, 24 species 
displayed a strong difference in relative abundance (Fig. 2E, 
S2 Fig.).

2. Predicting drug response using machine learning
A total of 18 feature sets were organized by arranging  

immune cell fraction and microbiome data with selected 
taxa from the GEO data and adjusting the application of  
up-sampling and amplification (S3 Table). Sets 01 and 03 
were observed to express the highest accuracy in the vali-
dation process at 76.47% and 70.59% at RF and 88.24% and 
82.35% at SVM, respectively. Set 01 was created with selected 
taxa that were dominantly expressed in the pCR group and 
set 03 comprised whole selected microbiome data.

A
Achromobacter
Alcaligenes
Amycolatopsis
Bacillus
Brevundimonas
Burkholderia
Clostridium
Corynebacterium
Cupriavidus
Desulfovibrio
Enterobacter
Helicobacter
Isoptericola
Janthinobacterium
Kibdelosporangium
Klebsiella
Laribacter
Methyloceanibacter
Mycobacterium
Mycoplasma
Pasteurella
Plantactinospora
Pseudoalteromonas
Pseudomonas
Rhodococcus
Snodgrassella
Staphylococcus
Streptococcus
Streptomyces
Variovorax
Vibrio

Genus

Re
la

tiv
e 

ab
un

da
nc

e

0
pCR RD

50

75

25

Acidobacteria
Actinobacteria
Aquificae
Armatimonadetes
Bacteroidetes
Chlamydiae
Chlorobi
Chloroflexi
Cyanobacteria
Deferribacteres
Deinococcus-thermus
Fibrobacteres
Firmicutes
Fusobacteria
Gemmatimonadetes
Nitrospirae
Planctomycetes
Proteobacteria
Spirochaetes
Synergistetes
Tenericutes
Thermotogae
Verrucomicrobia

Phylum
Re

la
tiv

e 
ab

un
da

nc
e

0
pCR RD

50

75

100

25

B C

In
de

x

Chao1

0
pCR RD

150

100

200

250

50

ns

In
de

x

Shannon

0
pCR RD

2.00

1.75

2.25

2.50

1.50

ns
Ax

is
 2

 (1
2.

1%
)

0.1

–0.2
Axis 1 (60.6%)

Macrophages M1

0.20 0.4

–0.1

0

pCR
RD

Condition

Fig. 2.  Microbiome composition of tumors from triple-negative breast cancer patients from Gene Expression Omnibus (GEO) data strati-
fied by drug response. pCR and RD each represent pathological complete response and residual disease, respectively. (A) Stacked bar chart 
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analysis. ns, not significant. (C) Beta diversity for all patients (p < 0.05).  (Continued to the next page)
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We created a receiver operating characteristic (ROC) curve 
for each model (Fig. 3A and B). Set 01 showed a higher area 
under the ROC curve (AUC) in both classifiers. Addition-
ally, the AUC for SVM was greater than RF in both datasets. 
When evaluating the AUC with the trained model and vali-
dation results, set 01 exhibited a higher AUC in validation at 
both classifiers, whereas set 03 expressed a higher AUC in 

the trained model.
To discover a feature that primarily affects drug response, 

we measured variable importance (Fig. 3C and D). In the 
SVM classifier, P. pulmonicola, Bacillus sonorensis, and Brucella 
melitensis were important features in both models to deter-
mine drug response. Additionally, Bradymonas sediminis was 
a key variable in the svm_03 model; however, RF expressed 
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Fig. 2.  (Continued from the previous page)  (D) Differential abundance analysis at species level using linear discriminant analysis effect size 
(LEfSe) stratified by drug response (linear discriminant analysis [LDA] score > 1.5, p < 0.05).  (Continued to the next page)
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a different pattern. Legionella pneumophila was an important 
feature for both models; nonetheless, Methyloceanibacter sp. 
wino2 and Kibdelosporangium phytohabitans for rf_01, Plantac-
tinospora sp. BB1 and Magnetospirillum magneticum for rf_03 

were also important variances in determining drug response.
In order to validate our model, we performed a correla-

tion analysis between the features of our microbiome and 
genes that are known to impact drug response. Our analysis 
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Fig. 4.  Correlations between microbiome and immune cell composition with a significant difference. (A, B) Heatmap plot indicating cor-
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revealed a positive correlation between two factors that both 
predict the same drug response (S4 Fig.). 

3. Co-occurrence between microbiome and immune cell
To observe a co-occurrence between selected taxa and  

immune cell subtypes, correlation analysis was performed 
(Fig. 4A and B). Both response groups were analyzed indi-
vidually, with immune cell fractional data of each particular 
patient and microbiota expressed dominantly in the group. 
Both groups represented a remarkable positive and negative 
correlation.

We created a network plot based on these findings, exclud-
ing edges that did not satisfy the threshold (Fig. 4C and D). 
This result demonstrated that the pCR group formed a more 
complex network than RD. In both groups, memory B cells, 
activated natural killer (NK) cells, activated CD4+ memory T 
cells, and Tregs exhibited relationships with the microbiota. 
Six taxa, including Geosporobacter ferrireducens, Streptococ-
cus sanguinis, and P. pulmonicola expressed high correlation 
coefficients with immune cell subtypes in the pCR group. 
Further, resting NK cells, M1 macrophages, and activated 
CD4+ memory T cells exhibited high correlations with the 
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microbiota. Alternatively, in the RD group, Plantactinospora 
sp. BC1 and Nitrosospira briensis possessed high correlation 
coefficients with Tregs.

4. Effects of immune cells and microbiome on survival
Five-year survival analysis was conducted on TCGA data 

with selected taxa from the GEO dataset analysis at the  

genus level and immune cell fraction data. M2 macrophages 
did not show an association with other microbiota but had a 
significant effect on survival, indicating an improved prog-
nosis with lower expression (Fig. 5A). Among the immune 
cell subtypes that showed a correlation in both groups or 
high co-occurrence, M1 macrophages and resting NK cells 
possessed a tendency to increase the survival rate when 
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the expression rate was high (Fig. 5B and C), whereas other  
immune cell subtypes did not indicate significance (Fig. 
5D-I). The survival rate of the other immune cells, which 
did not show a correlation with microbiota, did not differ 
significantly (S5 Fig.). Among the selected microbiota, Bru-
cella demonstrated a significant difference in survival rate, 
showing greater survival with reduced expression (Fig. 5J). 
However, the remaining microbiota taxa had no influence on 
survival (S6 Fig.).

Discussion

The difference in microbiome composition between tumor 
and normal tissues has been previously reported [35,36]. The 
tumor microbiome can increase genetic mutations, thereby 
promoting tumorigenesis, modulating the immune system, 
and potentially influencing cancer progression [37]. The role 
of the tumor microbiome on the presentation of clinical fea-
tures and treatment response has been reported in several 
studies. Pseudomonas may reduce metastasis of prostate can-
cer [37], Acidovarax spp. are abundant in lung cancer patients 

who smoked [38], and Fusobacterium nucleatum may promote 
metastasis of colorectal cancer [39].

Additionally, the overall abundance of bacteria is higher 
in breast cancer tissues than in normal breast tissues. Fur-
ther, the microbiome in breast cancer is more abundant and 
diverse than that of other tumors [40]. Several studies also 
reported the relationship between the tumor microbiome 
and clinical features in breast cancer. Lactobacillus was deter- 
mined to be positively correlated with lymphovascular  
invasion and lung metastasis; similarly, F. nucleatum has been 
associated with tumor growth and metastatic progression 
[41,42]. 

The tumor microbiome differs among the subtypes of breast 
cancer, including in TNBC and non-TNBC [40]. Compared to 
those in non-TNBC, Alkanindiges, Caulobacter, Proteus, Brevi-
bacillus, Kocuria, and Parasediminibacterium were determined 
to be enriched in TNBC [41]. These differences in the tumor 
microbiome may affect the tumor microenvironment. In 
TNBC tumor tissue, TILs and TAMs are more abundant and 
M2-type macrophages are up-regulated when compared to 
those in other breast cancer subtypes. Further, cancer-associ-
ated adipocytes in TNBC have a more pronounced effect on 
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the migration of cancer cells and, ultimately, promote tumor 
progression [43]. These factors may contribute to a poorer 
prognosis for patients with TNBC compared to the progno-
sis of those with other breast cancer subtypes. Nonetheless, 
studies using immune checkpoint inhibitors may have only 
shown strong results in the TNBC breast cancer subtype  
because of these specific characteristics [20].

In this current study, we confirmed significant differ-
ences in the tumor microbiome according to the treatment  
response in patients with TNBC receiving NAC. We also 
found correlation of the tumor microbiome and immune cell 
compositions in pCR and RD groups; further, the effect of 
tumor microbiome and immune cells on survival was also 
revealed. Several microbiome including P. pulmonicola, B. 
sonorensis, B. melitensis, and L. pneumophila were revealed as 
important features in determining the response of patients 
to NAC. Some microbiomes showed significant correlations 
with specific immune cell subtypes in both groups. With 
low expression of M2 macrophages, a known up-regulated 
factor in TNBC, improved prognosis was observed; addi-
tionally, high expression of M1 macrophages and resting 
NK cells indicated a tendency towards improved survival 
chances. Overall, we found correlations between tumor  
microbiome composition and clinical outcome and, ulti-
mately, determined the mechanism of the tumor microbiome 
in the overall tumor microenvironment. The results of this 
study are significant in that they can predict the treatment  
response of patients undergoing NAC. Therefore, this may 
be helpful in determining the appropriate treatment strategy 
for TNBC patients before surgery. By analyzing the microbi-
ome in the biopsy tissue at the time of diagnosis, the response 
to chemotherapy can be predicted and it can be possible to 
decide what specific treatment would be most appropriate 
for each individual.

This study, however, has several limitations. First, we did 
not analyze fresh tissue. Specifically, analysis of the microbi-
ome in fresh tissue samples may be considered to be more 
accurate; therefore, there are some limitations in the inter-
pretations of these findings. Further, the results of this study 
were obtained via retrospective analysis of previously reg-
istered information, in place of a prospective study. None-

theless, since the analysis in the current study exhibited sig-
nificant results, it would be meaningful to verify these results 
through a prospective study using fresh tissue in the future.

In conclusion, the response of chemotherapy can be pre-
dicted through microbiome analysis performed on tumor 
tissue in patients with TNBC receiving NAC. Additionally, 
the tumor microbiome may affect the immune microenviron-
ment of the tumor, which may affect treatment response and 
survival.
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