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Purpose  We aimed to evaluate whether the addition of pemetrexed is effective in improving progression-free survival (PFS) in epider-
mal growth factor receptor (EGFR)–mutated patients with or without concomitant alterations.
Materials and Methods  This multicenter clinical trial was conducted in China from June 15, 2018, to May 31, 2019. A total of 92 
non–small cell lung cancer (NSCLC) patients harboring EGFR-sensitive mutations were included and divided into concomitant and 
non-concomitant groups. Patients in each group were randomly treated with EGFR–tyrosine kinase inhibitor (TKI) monotherapy or 
EGFR-TKI combined with pemetrexed in a ratio of 1:1. PFS was recorded as the primary endpoint.
Results  The overall median PFS of this cohort was 10.1 months. There were no significant differences in PFS between patients 
with and without concomitant and between patients received TKI monotherapy and TKI combined with pemetrexed (p=0.210 and 
p=0.085, respectively). Stratification analysis indicated that patients received TKI monotherapy had a significantly longer PFS in 
non-concomitant group than that in concomitant group (p=0.002). In concomitant group, patients received TKI combined with pem-
etrexed had a significantly longer PFS than patients received TKI monotherapy (p=0.013). Molecular dynamic analysis showed rapidly 
emerging EGFR T790M in patients received TKI monotherapy. EGFR mutation abundance decreased in patients received TKI com-
bined chemotherapy, which supports better efficacy for a TKI combined chemotherapy as compared to TKI monotherapy. A good cor-
relation between therapeutic efficacy and a change in circulating tumor DNA (ctDNA) status was found in 66% of patients, supporting 
the guiding role of ctDNA minimal residual disease (MRD) in NSCLC treatment.
Conclusion  EGFR-TKI monotherapy is applicable to EGFR-sensitive patients without concomitant alterations, while a TKI combined 
chemotherapy is applicable to EGFR-sensitive patients with concomitant alterations. CtDNA MRD may be a potential biomarker for 
predicting therapeutic efficacy.
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Introduction

Non–small cell lung cancer (NSCLC) is the most com-
mon subtype of lung cancer, and epidermal growth factor 
receptor (EGFR) is a major oncogene that occurs in approxi-
mately 10%-30% of NSCLC patients [1]. Although first-gen-
eration EGFR–tyrosine kinase inhibitor (TKI) have become 
the standard treatment for NSCLC patients harboring a 19_ 
Del or L858R mutation for EGFR, most patients develop  
acquired resistance following 12-24 months of treatment [2]. 
Previous studies have indicated that the mechanisms for  
EGFR-acquired resistance include an EGFR T790M mutation, 

a MET amplification, a PTEN deletion, a PIK3CA mutation, 
an FGFR1 activation mutation, an epithelial-to-mesenchymal 
transition, and a transformation to small cell lung cancer  
[2-7]. Duan et al. [8] stratified NSCLC patients into the fol-
lowing three groups: (1) patients with only an EGFR-sensi-
tive mutation, (2) patients with an EGFR-sensitive mutation 
and a tumor suppressor gene mutation, and (3) patients with 
an EGFR-sensitive mutation and multiple oncogene muta-
tions. Their results indicated that during a TKI monotherapy 
treatment, patients with only an EGFR-sensitive mutation 
had the best treatment outcome, while patients with an  
EGFR-sensitive mutation and multiple oncogene mutations 
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had the worst treatment outcome [8]. Studies have also  
revealed that NSCLC patients with co-mutations in EGFR, 
as well as in genes such as TP53, KRAS, PIK3CA, and MLH1 
may enhance tumor progression over the course of an EGFR-
TKI treatment [9-12]. In EGFR-sensitive patients, nearly 8.9%, 
3.5%, 6%-36%, and 32.4% of them harbored MLH1 V384D-
mutation, PIK3CA mutation, KRAS mutation, and TP53 
exon 8 mutation, respectively [9,13,14]. All of these studies 
support the idea that the molecular stratification of NSCLC 
patients is of great significance for guiding treatment. How 
to best serve such patients remains controversial. Neverthe-
less, the development of appropriate treatments for stratified 
NSCLC patients is urgently needed.

Chemotherapy is widely used in lung cancer patients and 
is one of the regimens employed when TKI-resistance occurs. 
The main molecular target of pemetrexed chemotherapy is 
thymidylate synthase. A previous study indicated that the 
combination therapy of pemetrexed and erlotinib is capa-
ble of reducing the expression of thymidylate synthase in 
NSCLC [15]. Cell experiments and animal xenografts have 
confirmed that pemetrexed can effectively prevent the devel-
opment of an EGFR T790M mutation [16]. Studies have also 
shown that a TKI combined with chemotherapy results in 
better clinical benefits for NSCLC patients harboring EGFR 
mutations, although the survival benefit of this regimen still 
needs to be elucidated [17].

In this study, we sought to explore the therapeutic ef-
fects of EGFR-TKIs combined with chemotherapy in EGFR- 

mutated, advanced NSCLC patients having multiple muta-
tions. Using next-generation sequencing (NGS), we also 
sought to identify the subgroup of patients more likely to 
respond to EGFR-TKIs combined with chemotherapy, with 
the ultimate goal of providing evidence for personalized  
advanced NSCLC treatment.

Materials and Methods

1. Study design
For our study, we recruited EGFR-mutated, locally advan-

ced, or metastatic NSCLC patients from the First People’s 
Hospital of Foshan and the Nanhai People’s Hospital, and 
compared an EGFR-TKI monotherapy treatment versus an 
EGFR-TKI treatment combined with chemotherapy for pati-
ents with and without concomitant alterations. Our study 
was approved by the institutional ethics committees of the 
First People’s Hospital of Foshan and the Nanhai People’s 
Hospital. Our study was also conducted in accordance 
with the Declaration of Helsinki and international stand-
ards for good clinical practice. All patients provided written  
informed consent before entering our study.

2. Study population
From June 15, 2018, to May 31, 2019, a total of 286 advanced 

lung cancer patients were recruited. Patients with an EGFR-
sensitive mutation (an exon 19 deletion or an exon 21 L858R 
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Advanced NSCLC patients (n=286)

Patients with EGFR alterations (n=105)
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  before study entry (n=24)
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  TP53 exon8/KRAS/PIK3CA

  alterations arm (n=27)
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Fig. 1.  The randomization and trial profile. EGFR, epidermal growth factor receptor; NSCLC, non–small cell lung cancer; TKI, tyrosine 
kinase inhibitor.
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mutation, excluding the T790M mutation) were collected 
from the First People’s Hospital of Foshan and the Nanhai 
People’s Hospital. Patients were excluded if they had pri-
mary surgery or received prior systemic treatment including 
chemotherapy, target therapy, or immunotherapy. Patients 
with ALK, MET, ROS1, and RET position variants were also 
excluded. Based on these criteria, 92 patients were eligible 
for subsequent analysis. Patients with MLH1 V384D/TP53 
exon 8/KRAS/PIK3CA alterations were classified as the con-
comitant arm, while those without concomitant alterations 
were classified as the non-concomitant arm (Fig. 1).

3. Random assignment
Patients from the two study arms were randomly assigned 

to receive EGFR-TKI alone or EGFR-TKI combined with 
pemetrexed at a ratio of 1:1, so as to obtain more reliable effi-
cacy and safety research data. Random assignment was con-
ducted using a computer-generated random sequence and 
an interactive voice-response system and was stratified by 
sex (male vs. female).

4. Treatment protocol
EGFR-TKIs utilized included gefitinib or icotinib. Stand-

ard treatment courses and dosages, based on the correspond-
ing drug’s instruction manual, were applied. For an EGFR-
TKI combined with pemetrexed treatment, pemetrexed was 
given on the first day of each cycle (21 days) at a dose of 500 
mg/m2. All treatments were continued until disease progres-
sion, an unacceptable adverse event occurred, or an interrup-
tion due to other factors occurred.

5. Outcome measures
Tumor responses at the baseline and during treatment 

were recorded and evaluated based on Response Evaluation 
Criteria in Solid Tumor 1.1 criterion. Patient re-examination 
was performed every six weeks. Therapeutic outcomes were 
evaluated with imaging of computerized tomography. The 
primary endpoint for our study was progression-free surviv-
al (PFS), which was defined as the time from the point of data 
for initial treatment until the point of data for progressive 
disease, as determined using a radiologic evaluation or death 
from any cause. Adverse events were evaluated according to 
National Cancer Institute Common Terminology Criteria for 
Adverse Events (ver. 4.0).

6. Sample collection
Formalin-fixed, paraffin-embedded (FFPE) tumor tissues 

and matched blood samples were collected and transferred 
to OrigiMed Co., Ltd. (Shanghai, China) for genomic test-
ing. In addition to the baseline genomic testing of tumor tis-
sues, plasma samples collected at 2, 4, and 8 cycles of treat-

ment were used for circulating tumor DNA (ctDNA) testing. 
Genomic DNA and ctDNA were prepared using the QIAamp 
DNA FFPE Tissue Kit and the QIAamp DNA Blood Midi Kit 
(Qiagen, Hilden, Germany), respectively, according to the 
manufacturer’s instructions. The concentration of DNA was 
measured using Qubit and normalized to 20-50 ng/μL.

7.	The	identification	of	genomic	alterations
Genomic mutations were identified using the NGS-based 

YuanSu 450 gene panel (OrigiMed), which covers all of the 
coding exons for 450 cancer-related genes, as well as 64  
selected introns in 39 genes that are frequently rearranged 
in solid tumors. Genes were captured and sequenced at a 
mean depth of 800× using an Illumina NextSeq 500 (Illu-
mina, San Diego, CA). Dynamic detection of plasma ctDNA 
was performed using an NGS-based, XiYuan gene panel 
(OrigiMed) that included EGFR and 17 additional actionable 
target genes. Detailed procedures employed for identifying 
genomic alterations were, as follows: (1) single nucleotide 
variants (SNVs) were identified using MuTect (v1.17); (2) 
insertion-deletion (Indels) were identified using PINDEL 
(v2.05); (3) copy number variation regions were identified 
using Control-FREEC (v9.7), based on the following param-
eters: window=50,000 and step=10,000; (4) gene fusions were 
detected using an in-house pipeline; and (5) gene rearrange-
ments were assessed with the Integrative Genomics Viewer 
(IGV). The functional impact of each genomic alteration was 
annotated using SnpEff3.0.

8. Statistical analysis
Statistical analyses were performed using SPSS ver. 22.0 

(IBM Corp., Armonk, NY). Fisher’s exact test was used for 
significant difference analyses. A Kaplan-Meier curve and a 
log-ranked test were used for the survival analysis. p < 0.05 
was considered to be statistically significant.

Results

1. Patient characterization
A total of 92 NSCLC patients harboring EGFR-sensitive 

mutations, including 19_Del and L858R, were eligible for 
subsequent analysis. The cohort consisted of 31 (34%) male 
and 61 (66%) female patients, with a median age of 65 years 
old. All patients had advanced NSCLC, including four  
patients (4%) at stage III and 88 (96%) patients at stage IV, 
as identified using American Joint Committee on Cancer, 8th 
edition, criteria. Forty-five patients received an EGFR-TKI 
(icotinib or gefitinib) monotherapy and 47 patients received 
an EGFR-TKI treatment combined with pemetrexed (Table 1).

Weiguang Gu, TKI Combined with Pemetrexed in Advanced NSCLC
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2. Genomic alterations in EGFR-mutated NSCLC patients
According to the genomic alterations from the baseline 

tumor tissue samples, 497 clinically relevant genomic altera-
tions in 205 genes were identified in addition to EGFR altera-
tions. The most commonly mutated genes included TP53 
(70%), TERT (15%), CDKN2A (12%), MDM2 (11%), RBM10 
(11%), SDHA (11%), and NKX2-1 (10%) (S1 Fig.). The most 
common types of TP53 mutations were SNVs/Indels and 
29% (19/65) of them were TP53 exon 8 mutations. In addi-
tion, the mutational frequency of MLH1 V348D and PIK3CA 
were both 8% (7/92) in this cohort. No concurrent KRAS 
mutation was detected in this cohort. Nearly 29% (27/92) of 
patients harbored concomitant alterations with at least one 
mutation for MLH1 V384D, TP53 exon 8, and PIK3CA.

3. An EGFR-TKI combined with pemetrexed is more suit-
able for patients with concomitant alterations

In our cohort, there were 27 patients with concomitant  
alterations, including 14 patients received TKI monotherapy 
and 13 patients received TKI combined chemotherapy, and 
65 patients without concomitant alterations, including 31  
patients received TKI monotherapy, and 34 patients received 
TKI combined chemotherapy. The overall median PFS of this 
cohort was 10.1 months (95% confidence interval [CI], 9.2 to 
13.2) (S2 Fig.). For patients without concomitant alterations, 
median PFS was 11.2 months (95% Cl, 9.2 to 14.2), no signifi-
cant difference was determined for patients treated with an 
EGFR-TKI monotherapy or for patients with an EGFR-TKI 
treatment combined with pemetrexed treatment (p=0.910) 
(Fig. 2A). While for patients with concomitant alterations, the 
median PFS was 9.7 months (95% Cl, 7.8 to 13.5), and notably, 
the PFS of patients with EGFR-TKI treatment combined with 
pemetrexed treatment was significantly longer than those 
with the TKI monotherapy treatment (p=0.013) (Fig. 2B).  
Using a stratified analysis, we determined that for patients 
with an EGFR-TKI monotherapy treatment, PFS was signifi-
cantly worse in patients with concomitant alterations than 
patients without concomitant alteration (p=0.002) (Fig. 2C), 
while in patients with EGFR-TKI combined pemetrexed treat-
ment, no significant PFS difference was observed between 
patients with and without concomitant alterations (p=0.780) 
(Fig. 2D). However, we did not find a significant difference in 
prognosis between the TKI monotherapy group and the TKI 
combined pemetrexed treatment group (9.8 vs. 10.5 months, 
p=0.085) (Fig. 2E). The results suggest that concomitant  
alteration status may impact the efficacy of EGFR-TKI treat-
ment, and support our hypothesis that an EGFR-TKI treat-
ment combined with pemetrexed may effectively improve 
the prognosis of patients with concomitant alterations.

4. Molecular dynamic analysis reveals the advantages of 
EGFR-TKI combined with chemotherapy and the guiding 
role	of	ctDNA	status	in	efficacy	prediction	of	patients

To better understand the impact of concomitant alteration 
status and different treatment regimens on the prognosis 
of patients, we analyzed the development of EGFR T790M  
mutations during the course of treatment. By comparing  
patients with and without concomitant alterations, we found, 
for all monitoring stages, that the detection rate of T790M 
mutation in patients with concomitant alterations was lower 
than that in patients without concomitant alterations. How-
ever, no significant difference was determined (Fig. 3A). 
For the EGFR-TKI monotherapy group, the detection rate 
of T790M mutation during the first monitoring stage (1-4 
months) quickly increased, and gradually decreased during 
the second (4-8 months) and third (8-12 months) stages. For 
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Table 1.  Characterization of the enrolled patients (n=92)

 With  Without
 concomitant  concomitant 
Variable

 alterations alterations
 (n=27) (n=65)

Sex
    Male 9 (33.3) 22 (33.8)
    Female 18 (66.7) 43 (66.2)
Age (yr)  
    Mean±SD 64.5±10.2 62.6±10.7
    Median (range) 65.0 (43-92) 65.0 (38-82)
Stage  
    III 2 (7.4) 2 (3.1)
    IV 25 (92.6) 63 (96.9)
EGFR mutation types  
    L858R/M 15 33
    19DEL 10 31
    Amplification   7 12
    L681Q   1   1
    G719A   0   1
    A763_Y764insFQEA   1   0
Treatment type  
    TKI 14 (51.9) 31 (47.7)
    TKI+chem 13 (48.1) 34 (52.3)
Best disease responses   
    Partial response 19 46
    Stable disease   6 18
    Progressive disease   1   1
    Unkonwn   1   0
Response rate (%) 70.4 70.8
Disease control rate (%) 92.6 98.5
PFS rate 4/26 (15.4) 25/60 (41.7)
Values are presented as number (%) unless otherwise indicated. 
EGFR, epidermal growth factor receptor; PFS, progression-free 
survival; SD, standard deviation; TKI, tyrosine kinase inhibitor. 
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an EGFR-TKI treatment combined with pemetrexed group, 
the detection rate of T790M mutation was low and was rela-
tively consistent throughout the three monitoring stages 
(Fig. 3B).

Based on a dynamic analysis on EGFR mutation abun-
dance, we found that EGFR mutation abundances signifi-
cantly decreased during the first monitoring stage, both in 
patients receiving an EGFR-TKI monotherapy or an EGFR- 
TKI treatment combined with pemetrexed. In patients treat-
ed with an EGFR-TKI monotherapy, the EGFR mutation 
abundance began to increase during the second monitoring 
stage and reached its highest value during the third monitor-
ing stage. For patients treated with an EGFR-TKI combined 

with pemetrexed, EGFR mutation abundance remained low 
during the second monitoring stage and began to increase 
during the third monitoring stage. Although EGFR abun-
dance increased during the third monitoring stage, the level 
was still equivalent to that seen during the first monitoring 
stage (Fig. 3C).

We further evaluated ctDNA status in collected blood 
samples obtained from 32 enrolled patients by calculating 
the average variant allele frequency (VAF). Among them, 
seven patients with concomitant alterations and 11 patients 
without concomitant alterations displayed disease progress, 
and three patients with and 11 patients without concomitant 
alterations displayed disease stability. No significant corre-
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lation was determined between treatment strategy and dis-
ease status. For patients with disease progress, ctDNA VAF 
increased during dynamic monitoring in 10 out of 18 patients 
(Fig. 4). Although the remaining eight patients did not dis-
play a ctDNA VAF increase, in six patients, ctDNA VAF was 
not detected for over half a year until disease progressed. 
In a similar manner, 11 of 14 patients with disease stability 
displayed a decline in ctDNA during dynamic monitoring, 
while the remaining three patients displayed an increase 
in ctDNA VAF (Fig. 4). These three patients did not have a  
ctDNA test for more than ten months, from the last detection 
to the latest follow-up. Taken together, our results indicate 
that treatment efficiency in nearly 66% (21/32) of patients 
was consistent with ctDNA status.

5. Adverse events
In this cohort, a total of 46 patients experienced adverse 

events, of which 21 received an EGFR-TKI monotherapy 
treatment and 25 received an EGFR-TKI treatment combined 
with pemetrexed. Amongst patients receiving an EGFR-TKI 
monotherapy, four exhibited high-grade adverse events,  
including one patient with acne-like dermatitis, one patient 
with elevated aspartate aminotransferase (AST), one patient 
with elevated alanine aminotransferase (ALT), and one pati-
ent with diarrhea. Amongst 25 patients receiving an EGFR-
TKI treatment combined with chemotherapy, eight patients 
exhibited high-grade adverse events, including two patients 
with acne-like dermatitis, one patient with elevated AST, one 
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patient with elevated ALT, one patient with stomatitis, one 
patient with anemia, one patient with diarrhea, and one pati-
ent with neutropenia.

Discussion

First-generation EGFR-TKIs such as gefitinib, erlotinib, 
and icotinib have been widely used in clinics for treating  
advanced NSCLC patients [18]. Acquired resistance to TKIs 
is one of the main challenges for the clinical management of 
NSCLC [2]. In our study, 29.3% (27/92) of enrolled patients 
displayed concomitant alterations with at least one muta-
tion for MLH1 V384D, TP53 exon 8, and PIK3CA. A survival 
analysis indicated that patients with concomitant alterations 
had a worse prognosis as compared to patients without con-
comitant alterations. This result is consistent with previous 
studies [9,10,12], and suggests that concomitant mutations, 
including MLH1 V348D, TP53 exon 8, and PIK3CA, may be 
associated with acquired TKI resistance.

Cisplatin-based chemotherapy is the first-line strategy 
for treating wild-type EGFR NSCLC [19]. Considering dif-
ferences in drug mechanisms, EGFR-TKIs combined with 
chemotherapy for treating advanced lung cancer may result  
in better efficacy [20,21]. A randomized, Phase II clinical 
study found that EGFR-TKI combined with pemetrexed 
significantly prolonged PFS, time to progression, and the  
duration of response in advanced, non-squamous NSCLC 
patients with an EGFR activation mutation [17]. Although 
no significant difference was determined for overall sur-
vival, another randomized Phase II clinical trial investigat-
ing the first-line treatment of advanced NSCLC found that 
erlotinib combined with gemcitabine and carboplatin signifi-
cantly prolonged the PFS of patients with an EGFR activation  
mutation as compared to the lone use of gemcitabine and 
carboplatin chemotherapy [22].

Recently, a meta-analysis indicated that first-generation 
TKIs combined with platinum-based doublet chemothera-
peutic drugs are more likely to benefit advanced NSCLC 
patients with EGFR-sensitive mutations [23]. However,  
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using doublet chemotherapy portends that patients will 
suffer greater chemotherapy toxicity. Considering the toxic 
and side effects and drug efficacy, pemetrexed was selected 
to combine with TKI in the study to compare the progno-
sis of patients treated with monotherapy and combination 
therapy. Similar to previous studies [17,24], although no sta-
tistically significant difference was determined, the survival 
curve displayed a slight difference.

Several past studies have yielded no significant difference 
when employing a TKI combined with chemotherapy and 
when employing chemotherapy alone in unselected patients 
[25]. An inadequate selection of patients and an interference 
in the cell cycle time between a TKI and chemotherapy have 
been hypothesized to be reasons for these types of negative 
results [21]. In this cohort, nearly 52% (48/92) of patients 
carried the EGFR L858R mutation. A previous study has 
shown that patients harbored EGFR 19_Del confers lower 
PFS with icotinib than those harbored EGFR L858R muta-
tions [26]. Therefore, the distribution of EGFR L858R and 
EGFR 19_Del may be the cause of a shorter PFS than pre-
vious studies. In addition, previous studies indicate that  
mutations in TP53 exon 8, PIK3CA, and MLH1 V348D may 
be associated with the acquired resistance related to EGFR-
TKI treatment [9,10,12]. For our study, we not only enrolled 
advanced NSCLC patients with activating EGFR mutations 
but also stratified patients based on potential influencing fac-
tors such as TP53 exon 8, PIK3CA, and MLH1 V348D. This 
may be another potential reason why our results are different 
from those obtained from previous studies. Our results also 
revealed significantly better prognosis for the TKI combined 
with chemotherapy group for patients with concomitant  
alterations, as compared to the TKI monotherapy group, sug-
gesting that the non-specific killing effect of chemotherapy is 
effective in selected patients with an EGFR-sensitive muta-
tion and concomitant alterations including TP53 exon 8, PIK-
3CA, or MLH1 V348D, potentially resulting in a benefit from 
combination therapy for nearly 30% of Asian lung cancer 
patients. In addition, EGFR T790M accounts for about 50% 
of the resistance mechanism of first-generation EGFR-TKIs 
[27]. Although osimertinib shows activity in patients with  
acquired T790M mutation and is recommended as the first-
line treatment against NSCLC with TKI-sensitive EGFR  
mutations [28], our results also suggest that osimertinib com-
bined with chemotherapy may be a potential strategy for 
NSCLC patients harboring an EGFR mutation.

In addition to the tendency of a TKI combined with pem-
etrexed to improve PFS in non-stratified patients and the 
finding that a TKI combined with pemetrexed significantly 
improved PFS for patients with concomitant alterations, we 
also observed similar efficacy between the TKI monotherapy 
group and the TKI combined with chemotherapy group for 

patients without concomitant alterations. Without consider-
ing concomitant alterations, Cheng et al. [17] reported that, 
compared to gefitinib monotherapy, the combination of  
gefitinib and pemetrexed effectively improves PFS in NSCLC 
patients. Based on previous studies [8,17], we fully consid-
ered the effects of different patient stratifications in regards 
to a TKI monotherapy and a TKI combined with chemo-
therapy, and deduced that whether or not an EGFR-sensitive  
patient has concomitant alterations plays an important guid-
ing role in relation to further combined TKI and chemother-
apy treatments. However, having a small number of patients 
was a limitation of our study. Further clinical trials with an 
enlarged cohort are required.

EGFR-activated tumors are composed of heterogeneous 
subclones containing a variety of EGFR allele combinations. 
Changes in ctDNA levels are known to be correlated with 
clinical responses to an EGFR-TKI. Dynamic monitoring of 
ctDNA levels can provide real-time tumor responses to an 
EGFR-TKI and can lead to information regarding the propor-
tion of each subclone [29]. Past studies have also indicated 
that almost half of patients with an EGFR T790M mutation 
display clinical progression around 2.2 months [30]. Based 
on ctDNA detection, a previous study showed that the PFS 
of patients with a high EGFR mutation abundance was bet-
ter than that of patients with a low EGFR mutation abun-
dance, suggesting that the dynamic quantitative analysis of 
an EGFR mutation in ctDNA can be used to guide for the per-
sonalized treatment of advanced lung adenocarcinoma [31].

In our study, dynamic monitoring results revealed that the 
EGFR T790M mutation appeared earlier within the TKI mon-
otherapy group, indicating a worse prognosis for TKI mono-
therapy as compared to a TKI combined with chemotherapy. 
Such results are very consistent with our survival analysis. 
However, the frequency of the T790M mutation was lower 
in patients with concomitant alterations, a contradiction in 
regard to the poor prognosis experienced by these patients. 
Since TP53 exon 8, MLH1 V348D, and PIK3CA serve as  
potential mechanisms for EGFR-TKI resistance [9,10,12], the 
acquired EGFR-TKI resistance mechanism, with the excep-
tion of T790M, is more likely in patients with concomitant 
alterations. Taken together, our results indicate the impor-
tance of EGFR-sensitive patient stratification and support the  
notion that the dynamic monitoring of EGFR T790M muta-
tion should be performed with caution when used to guide 
for personalizing the treatment of patients with concomitant 
alterations.

Recently, ctDNA minimal residual disease (MRD) has been 
reported to be a biomarker for early predictions of recurrence 
in surgically resected NSCLC patients [32]. CtDNA status 
may also be used to represent MRD levels [32]. However, few 
reports exist regarding how to guide medication in patients 
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with advanced NSCLC. In this study, we sought to evalu-
ate the therapeutic effect of advanced NSCLC patients by 
analyzing ctDNA status. Although no correlation between 
ctDNA status and treatment strategy existed for ctDNA 
and concomitant alterations status, in 66% of our advanced 
NSCLC patients, we did find that changes in ctDNA status 
were associated with treatment responses. For most of the 
remaining patients, a ctDNA determination was not quick-
ly obtained subsequent to the previous ctDNA determina-
tion and the last follow-up interval, which may be a reason 
for consistency in regards to ctDNA status and therapeutic  
effects. Furthermore, a previous study speculated that MRD 
caused by intratumoral heterogeneity may be the earliest 
form of acquired drug resistance [33]. Therefore, without 
personalized ctDNA, the lack of an MRD analysis may be 
a deficiency of our study and is another potential reason 
for inconsistencies associated with therapeutic efficacy and 
ctDNA status. However, the application of ctDNA MRD in 
the evaluation of therapeutic efficacy for advanced NSCLC is 
still controversial and requires additional confirmation.

In conclusion, our results suggest that patients with con-
comitant alterations are more sensitive to an EGFR-TKI treat-
ment combined with chemotherapy, both in terms of progno-
sis and dynamic monitoring results. Our results also indicate 
potential evidence for predicting therapeutic efficacy using 
ctDNA MRD in patients with advanced NSCLC, which pro-
vides valuable information for lung cancer precision medi-
cine.
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